Master's thesis examination 21/01/2020

Real-Time, Full-Band, High-Quality Neural Voice Conversion with Sub-Band Modeling and Data-Driven Phase Estimation

48-196610 Takaaki Saeki

Supervisor: Prof. Hiroshi Saruwatari

Research Field: Voice Conversion (VC) [Stylianou+88] 2/25

VC removes physical constraints of human vocal organs

Live streaming with avatar

Assisting the speech-impaired

Enhancing musical expression

Requirements of VC

VC needs all of these properties for augmenting human communication

Necessity for high-quality real-time VC

Overview of This Thesis

Chapter 1. Introduction

Chapter 2. Statistical Voice Conversion

Chapter 3. Proposed Methods

Chapter 4. Implementation of Real-time, Online, Full-band VC System Chapter 5. Conclusion

DNN-Based Real-Time VC [Arakawa+19]

6/25

Low speech quality due to narrow-band (0-8 kHz) speech Quality degradation in waveform synthesis module

Spectral-Differential VC [Kobayashi+18]

7/25

Spectral-differential VC uses filtering-based waveform synthesis

High-quality synthesis with simple structure

Goal: real-time full-band (0-24 kHz) VC based on spectral-differential VC

Problems for Full-band Real-Time VC

High computational cost in waveform synthesis

8/25

Table of Contents

Chapter 1. Introduction Chapter 2. Statistical Voice Conversion

Chapter 3. Proposed Methods

Chapter 4. Implementation of Real-time, Online, Full-band VC System Chapter 5. Conclusion

Overview of This Thesis

Training Process with Data-Driven Phase Estimation 11/25

Training phase parameter u and model parameter considering filter truncation

Constructing short-tap filter without degrading quality

Evaluation of Data-Driven Phase Estimation

12/25

Subjective evaluations with different filter length for conventional and proposed methods (0-8 kHz)

Speaker similarity

Speech quality

Proposed	Sco	ore	Conventional	Proposed	Score		Conventional
6 % length	0.642	0.358	6 % length	6 % length	0.807	0.193	6 % length
6 % length	0.543	0.457	100 % length	6 % length	0.742	0.258	100 % length

Short-tap proposed > Short-tap conventional
Short-tap proposed >= Full-tap conventional

Proposed method can reduce computational cost by <u>94 % while maintaining quality!</u>

Overview of This Thesis

Sub-band Modeling Method

Separately model each frequency band with sub-band multirate processing [Crochiere+83]

14/25

- Only converting lowest-frequency band (0-8 kHz) with DNN
- Roughly modifying or passing through higher-frequency band (8-24 kHz)

Analysis of Sub-Band Modeling Method

Without sub-band modeling

With sub-band modeling

Target speech

15/25

Sub-band modeling method avoids over-smoothed spectrum and leads to fine structures in whole frequency bands

Evaluation of Proposed Methods

Subjective evaluations for Benchmark* and combination of proposed methods (0-24 kHz)

* Benchmark: Full-band (0-24 kHz) spectral-differential VC without proposed methods

Speaker similarity

Speech quality

16/25

Proposed	Sco	ore	Benchmark	Proposed	Score		Conventional
6 % length	0.516	0.484	100 % length	6 % length	0.840	0.260	100 % length

Short-tap proposed methods ≅ Full-tap benchmark Short-tap proposed methods >> Full-tap benchmark

Proposed methods can significantly improve speech quality while reducing computational cost in filtering!

Table of Contents

Chapter 1. Introduction Chapter 2. Statistical Voice Conversion Chapter 3. Proposed Methods

Chapter 4. Implementation of Real-time, Online, Full-band VC System Chapter 5. Conclusion

Implementation of Real-Time VC System

Requirements of real-time VC system for practical applications

- Streaming conversion
- Pitch transformation for cross-gender VC

18/25

System Overview

Real-time system receives 25 ms frame and processes each frame within 5 ms

System Overview

System includes **pitch transformation** and improved training and preprocessing

20/25

Evaluations on Computational Efficiency

*Processing time (ms) / input waveform length (ms)

Experimental Evaluation on VC Quality 22/25

Evaluated naturalness of converted speech with mean opinion score (MOS)

Proposed system achieves significantly higher-quality than **benchmark**

Subjective evaluations for Proposed+ and other DNN-based VC system [Arakawa+19]

Speaker similarity

Speech quality

Proposed+	Sco	ore	(Arakawa+19)	Proposed+	Score		(Arakawa+19)
m2m	0.727	0.273	m2m	m2m	0.977	0.023	m2m
f2f	0.907	0.093	f2f	f2f	0.967	0.033	f2f
f2m	0.777	0.223	f2m	f2m	0.960	0.040	f2m
m2f	0.880	0.120	m2f	m2f	0.967	0.033	m2f

Spkr	Source	Target	(Arakawa+19)	Proposed+
m2f				

Proposed real-time VC system achieves significantly higher speaker similarity and speech quality than other DNN-based real-time VC system

Publications and Research Activities

```
24/25
```

Original Journal Papers

[<u>Saeki+</u>, IEEE SPL (submitted)] [<u>Saeki+</u>, IEICE Trans. (submitted)]

International conferences

[<u>Saeki+</u>, INTERSPEECH20] [Kimura+, INTERSPEECH20] [<u>Saeki+</u>, ICASSP20]

Domestic conferences

6 publications

Patents

3 submissions

Exhibitions

Sainokuni Buisiness Arena 2021 ONLINE CEATEC 2020 ONLINE

Purpose

Developing real-time, full-band, high-quality VC system

Contributions

Data-driven phase estimation method for reducing computational cost in filtering Sub-band modeling method for high-quality and efficient full-band VC Implementation of real-time full-band VC system

Results

Attaining 2.5 GFLOPS and RTF < 1 for converting full-band speech Achieving high-quality output speech with 3.6 / 5.0 MOS of naturalness

Future works

Improving feature analysis for better speaker similarity