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Abstract

Voice conversion (VC) is a method for converting the characteristics of a source speech

into those of a target speech, while preserving the linguistic information. VC enables di-

verse and flexible speech communication beyond the physical limitations of human vocal

organs. With the recent developments in deep learning, many statistical VC methods have

been proposed for achieving high flexibility and converted-speech quality. Since the main

focus of VC technology is to augment human speech communication, it is necessary to

develop a real-time VC method for achieving low latency and fast conversion. Therefore,

real-time VC methods using a Gaussian mixture model and deep neural network have

been proposed for converting narrow-band (16 kHz-sampled) speech in real time using a

CPU. However, the converted-speech quality with these methods is much lower than that

of human’s natural speech. This is mainly because 1) the bandwidth that can be handled

with a conventional real-time VC method (0–8 kHz) is far from covering the human au-

dible range (20 Hz–20 kHz), and 2) the converted-speech quality degrades in the process

of synthesizing the output waveform from speech features. A real-time VC method, as

an augmentation method of human speech communication, needs to attain speech quality

comparable to human natural speech. This thesis proposes two VC methods to improve

converted-speech quality and computational efficiency. It also presents the implementation

and evaluation of a real-time full-band online VC system that is based on the proposed

methods. This thesis takes a different approach from those on conventional real-time

narrow-band VC systems and uses a DNN-based VC method that is based on spectral-

differential VC, which performs conversion in the waveform domain. Spectral-differential

VC has the advantage of generating the output speech with a filtering operation instead

of synthesizing the waveform from speech features, thus achieving high-quality converted

speech with a simple structure. Although a conventional spectral-differential VC method

based on deterministic phase estimation can produce high-quality speech, the computa-

tional cost of the synthesis process is high due to the long filter length. Furthermore,

when the method is extended to full-band (48 kHz-sampled) VC, the computational cost

significantly increases due to increased sampling points, and the converted-speech quality

degrades due to large fluctuations in the high-frequency band. This thesis first introduces

the proposed lifter-training method, which is a data-driven phase estimation method that

takes into account filter truncation to construct a short-tap filter. The thesis then intro-

duces the proposed sub-band modeling method for improving the computational efficiency

and converted-speech quality of full-band VC. A streaming VC system that can convert

48 kHz-sampled speech in real time that is based on the proposed methods was imple-

mented and evaluated. The evaluation results indicate that 1) the proposed methods can

reduce theoretical complexity to about 10 %, 2) the real-time full-band VC system can

convert full-band speech in real time using a single CPU, and 3) it attains high-quality

output speech with a 3.6 out of 5.0 mean opinion score of naturalness.
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概要
声質変換は，言語情報を保持しながら，ある話者の発話音声を別の話者の発話音声に変換す

る技術である．声質変換技術により，人間の発声器官などの物理的制約を超えた，多様かつ自
由度の高い音声コミュニケーションが可能となる．近年の深層学習の発展に伴い，統計的声質
変換技術が盛んに研究されており，高い柔軟性・変換音声品質をもつ手法が多数提案されてい
る．一方で，声質変換技術の主眼は人間のコミュニケーションの拡張であることから，実応用
のためには，低遅延・高速な変換を行うリアルタイム声質変換技術の確立が急務である．これ
まで，Gaussian mixture modelや deep neural network (DNN) を用いたリアルタイム声質
変換手法が提案されており，1つの CPUを用いて 16 kHzサンプリングの狭帯域音声をリア
ルタイムに変換できることが報告されている．しかし，その出力音声品質は，人間の自然音声
品質と比較すると極めて低い．これは，従来のリアルタイム声質変換手法で扱える音声の帯域
(0–8 kHz) が人間の可聴域 (20 Hz–20 kHz) をカバーできていないことや，音声特徴量から出
力波形を合成する処理での品質劣化が主な要因である．リアルタイム声質変換技術が人間のコ
ミュニケーションの拡張手段として融けるためには，自然音声に匹敵する自然性・音質を実現
する必要がある．本論文では，高品質化・計算効率向上のための 2 つの声質変換手法を提案
し，それに基づくリアルタイム広帯域 DNN声質変換システムを実装・評価する．本研究は，
既存のリアルタイム声質変換とは異なるアプローチを取り，波形領域での変換手法である差分
スペクトル法に基づく DNN声質変換手法を用いる．差分スペクトル法は，出力音声をフィル
タリングによって生成し，音声特徴量からの波形生成を行わないため，簡素な構造でありなが
らも高い音質を実現できるという利点がある．従来の決定論的な位相推定に基づく差分スペク
トル法は，高品質な音声が出力できるものの，フィルタ長が長く，フィルタリングによる生成
処理の計算コストが高い．また，この手法を 48 kHzサンプリングの広帯域声質変換に対して
用いた場合，サンプリング数の増加により計算コストが大幅に増大し，さらに高周波数帯域の
スペクトル変動によって変換音声品質が低下するといった問題がある．本論文では，まずタッ
プ長の短いフィルタを推定するため，フィルタ打ち切りを考慮したデータドリブンな位相推定
法を提案する．さらに，広帯域声質変換の計算効率および変換音声品質を改善するための帯域
別モデリング手法を提案する．これら 2つの提案手法を用いて，48 kHzサンプリング音声を
リアルタイムに変換するための声質変換システムを実装する．評価では，提案手法を用いるこ
とで，1) 計算量を 10 %程度に削減できることを理論値により示し，2) 1CPUで広帯域音声
をリアルタイムに変換できることを計算機実験により示し，3) mean opinion score 3.6程度
の高音質な変換音声を出力できることを主観評価実験により示す．
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Chapter 1

Introduction

1.1 General background

Speech plays one of the most important roles in human communication. It can simulta-

neously convey linguistic content and a variety of information such as emotions, implicit

meanings, and speaker identities. Speech-to-speech transformation technology, which con-

verts input speech into another with different acoustic features and linguistic information,

have been studied to extend human speech communication and speech expression. As

shown in Figure 1.1, it has a ride range of practical applications including entertainment

use such as virtual live streaming and singing-voice transformation [3, 4], speech assistance

for people with speech impairments [5, 6], and virtual conference system among differ-

ent languages. Speech-to-speech transformation technology can be classified into three

paradigms, as shown in Figure 1.2. The first paradigm converts the speaker identity de-

rived from acoustic features instead of converting linguistic or para-linguistic information.

It can remove the physical constraints of human vocal organs and enables diverse and

flexible speech communication using any kind of voice [7]. The second transforms para-

linguistic information, which includes speaking style [8, 9] and emotion [10, 11, 12]. The

third converts linguistic information of an input utterance. As a typical example, speech-

to-speech translation [13, 14] transforms speech spoken in one language into speech in

another language, which removes language barriers due to differences in mother tongues.

This thesis focuses on voice conversion based on the first paradigm, which only converts

non-linguistic information*1.

VC converts the characteristics of source speech into those of target speech while keeping

the linguistic information unchanged [15]. The most common VC method is statistical

VC [15, 16, 17, 18, 19, 20, 21, 22], which is used to construct an acoustic model that

converts speech features of a source speaker into those of a target speaker. With the

recent development of deep learning, deep neural network (DNN)-based VC [23, 24, 25,

*1 Appendix A presents another study for the third paradigm. This study proposes a low-latency end-

to-end incremental text-to-speech (TTS) synthesis method for real-time speech-to-speech transla-

tion.
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Fig. 1.1. Practical applications of speech-to-speech transformation technology. There are

wide range of applications, including entertainment use such as virtual live

streaming and singing-voice transformation, as well as speech assistants and

video chat systems among different languages.

26, 27, 28, 29, 5] achieving high quality and flexibility has been widely studied. Since

the main focus of VC is to augment human speech communication, it must be real-time

and online with limited computational resources, and real-time VC methods based on

a Gaussian mixture model [30] and DNN [1] have been studied. They achieve online

conversion of narrow-band (16 kHz-sampled) speech using a single CPU on a laptop PC.

However, the converted-speech quality with those methods is much lower than that of

human natural speech. This is mainly because 1) the bandwidth that can be handled with

a conventional real-time VC method (0–8 kHz) is far from covering the human audible

range (20 Hz–20 kHz), and 2) the converted-speech quality degrades in the process of

synthesizing the output waveform from speech features. A real-time VC system, as an

augmentation technology of human speech communication, needs to attain speech quality

comparable to human natural speech.

VC consists of three steps: feature analysis, feature conversion, and waveform synthesis.

For the last step, which is the most computationally exhaustive, this thesis focuses on a

spectral-differential VC method [31, 32, 33] that performs conversion in the waveform-
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Fig. 1.2. Three types of speech-to-speech transformation methods. This thesis focuses on

voice conversion methods based on first type, which only converts non-linguistic

information.

domain by applying a spectral differential filter to the source speech waveform. This 1)

achieves high-quality conversion by avoiding vocoder errors and 2) incurs less computa-

tional cost than neural vocoders [34, 35, 36, 37, 38] that use large DNNs and require

sample-by-sample heavy computation. Spectral-differential VC method originally used a

mel-log spectrum approximation (MLSA) filter [39] to filter a source speech, but Suda

et al. found that using a minimum-phase filter achieved higher converted-speech quality

than using the MLSA filter [32]. Regarding the minimum-phase filter, an acoustic model

(e.g., DNN) outputs a real cepstrum of the converted speech, and the Hilbert transform

using a lifter with fixed parameters determines the phases of the filter from the real cep-

strum. These processes are suitable for the thesis’s aim because their computational costs

(i.e., filter design) are very low. However, since the minimum-phase filter is not guaran-

teed to have a short tap length (i.e., the number of samples of the filter), it increases the

computational cost of filtering. Furthermore, there are two problems when extending this

method from narrow-band (16 kHz-sampled) VC to full-band (48 kHz-sampled) VC: 1)

converted-speech quality degrades due to large fluctuations in the high-frequency band,

and 2) computational cost is high (mainly in the filtering operation) due to increased

sampling points.

1.2 Thesis scope

This thesis addresses computationally efficient and high-quality methods based on

spectral-differential VC. First, it proposes a lifter-training method with filter truncation
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Fig. 1.3. Overview of conventional spectral-differential method, proposed lifter training

method and proposed sub-band modeling method. Chapter 4 presents imple-

mentation of real-time online full-band VC system based on proposed methods.

for significantly reducing computational cost without degrading converted-speech quality.

This method jointly trains a DNN-based acoustic model and a lifter with trainable

parameters. Since parameters of the DNNs and the lifter are optimized to maximize

conversion accuracy by taking into account a truncated (i.e., short-tap) filter, this

method can reduce computational cost while preserving conversion accuracy. The main

difference between the proposed method and a conventional spectral-differential VC

method using a minimum-phase filter is with the lifter to determine the phase of the

filter. Whereas the lifter of the minimum-phase filter is fixed, that of this method is

trained from speech data to determine the phases of a truncated filter. Second, for

full-band VC, this thesis also proposes a frequency-band-wise modeling method based

on sub-band multi-rate signal processing (hereafter, “sub-band modeling method”) [40].

Since the characteristics of a speech waveform vary significantly from band to band, it is

effective to process the waveform separately for each band. This method enhances the

computational efficiency by reducing sampling points of signals converted with filtering

and improves the converted-speech quality by modeling only the low-frequency band that

contributes to speaker identity and avoiding high-frequency modeling. Figure 1.3 shows

an overview of the proposed methods. Lifter-training method is applied to narrow-band

VC to significantly reduce computational cost and achieve real-time VC with a low-power

CPU of a single-board computer (e.g., Raspberry Pi). Furthermore, the proposed

methods are jointly used for full-band VC to achieve real-time conversion with a single
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CPU of a mobile device. This thesis also presents the implementation and evaluation of

the real-time online VC systems based on the proposed methods. This system is highly

applicable because it supports cross-gender conversion with fundamental frequency (F0)

transformation in the waveform domain. The experimental results indicate that 1) the

proposed lifter-training method for narrow-band VC can reduce the computational cost

of filtering operation to 1/16 without degrading converted-speech quality and 2) the

proposed sub-band modeling method for full-band VC can improve the converted-speech

quality while reducing computational cost, and 3) the real-time full-band online VC

system can convert 48 kHz-sampled speech in real time attaining converted speech with

a 3.6 out of 5.0 mean opinion score (MOS) of naturalness and with significantly higher

speaker similarity and speech quality than another DNN-based real-time VC system [1].

The main contributions of this thesis are as follows:

• A lifter-training method with filter truncation is proposed. It is a data-driven phase

estimation method different from the deterministic one in the conventional method,

and there is no increase in computational cost in the conversion process. This

method can be applied to other tasks processed by filtering, e.g., source separation

and speech enhancement.

• A sub-band modeling method for full-band VC is proposed. It improves full-band

converted-speech quality and provides new insights into high-frequency processing

of a speech signal that can be applied to various tasks.

• A real-time full-band online VC system based on the proposed methods was imple-

mented incorporating several techniques to improve the converted-speech quality.

Since this system can incrementally output high-quality full-band speech in real

time using limited computing resources, it can easily be applied to real-world op-

eration.

1.3 Remainder of this thesis

This thesis is organized as follows. Chapter 2 briefly reviews other studies on statistical VC

including DNN-based VC, real-time VC, and spectral-differential VC. At the end of Chap-

ter 2, a conventional spectral-differential VC with a minimum-phase filter is discussed in

detail. Chapter 3 introduces the proposed methods. The proposed lifter-training method

for short-tap filtering is described in Section 3.2 and the proposed sub-band modeling

method for full-band VC is described in Section 3.3. Chapter 4 presents the implemen-

tation and evaluation of a real-time full-band online VC system based on the proposed

methods. Finally, Chapter 5 summarizes the key points and mentions future work.
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Chapter 2

Statistical voice conversion

2.1 Introduction

VC belongs to the general technical field of speech synthesis, which generates speech from

text or speech with different properties (e.g., emotion, accents, and speaker identity).

Ever since the advent of computer-based speech synthesis in the 1950s, the automatic

manipulation of such speech properties has been studied. With the development of deep

learning, VC has experienced a technological revolution. Recent DNN-based VC meth-

ods attain high-quality converted speech comparable to human natural speech and flexible

manipulation of speech properties, bringing various real-world applications including com-

munication aids for speech-impaired people [5, 6] and singing-voice synthesis [3, 4].

A typical VC pipeline consists of speech analysis, acoustic modeling, and waveform

synthesis. In speech analysis, the source speaker’s speech signal is decomposed into fea-

tures that represents speaker-dependent characteristics such as spectrum and formants.

The mapping module converts the source speech features into target ones. Statistical VC

uses a model with trainable parameters (hereafter, an “acoustic model”) to provide this

mapping. The converted speech features are passed to the waveform generator, which syn-

thesizes the output speech waveform from the converted speech features. In many studies,

the mapping module and its training procedure have been regarded as a key component

of the pipeline. VC methods can be categorized on the basis of the modeling technique of

the mapping function, use of the training data, and so on.

There are two types of methods for training a statistical model to provide a mapping,

i.e., using and not using parallel training data, which are called as parallel VC and non-

parallel VC, respectively. Parallel VC methods focus on spectrum mapping using parallel

training data, where training data with the same linguistic information are available from

the source and target speakers. To obtain the time alignment of the source and target

frames for acoustic model training, the dynamic time warping (DTW) [41] algorithm has

been traditionally used. Parallel VC methods based on statistical parametric approaches

are robust against relatively small amounts of training data, and several such methods

using Gaussian mixture models [22, 42, 43], dynamic kernel partial least squares regres-



Chapter 2 Statistical voice conversion 7

sion [44], and DNN-based models [24, 26] have been proposed. Since the domains of

the input and output features of an acoustic model are the same in VC tasks, direct

waveform-modification methods using spectral differentials [31, 32] (“spectral-differential

VC methods”) have also been studied. There are several statistical non-parametric tech-

niques using parallel training data including an exemplar-based sparse representation

technique [45, 46, 47, 48, 49]. Although this technique requires a smaller amount of train-

ing data than parametric VC, it addresses quality degradation due to over-smoothing

problems. On the other hand, several non-parallel VC methods [50, 51, 52, 53, 54, 55]

have also been studied. One of these methods uses the INCA alignment technique [52] to

extend parallel VC to non-parallel VC, which expends the range of practical applications.

The phonetic posteriogram-based approach [53, 55] uses an external automatic speech

recognizer to obtain the intermediate phonetic representation. Recent DNN-based non-

parallel VC methods [56, 57, 27, 29] achieve significantly higher quality than traditional

non-parallel VC mathods, whereas the amount of training data becomes larger, and the

acoustic model tends to be more complex than with DNN-based parallel VC methods.

There are also two types of conversion strategies: performing the conversion at the frame

level and the utterance level. Recent VC methods often assume utterance-level conversion

with an acoustic model using time series information of the whole utterance [5, 58, 59],

leading to natural output speech but huge latency in conversion. Furthermore, many

frame-level VC methods require large conversion latency due to, for example, a DNN-

based acoustic model, parametric vocoder with a large time delay, and neural vocoders.

Since the goal of VC is enhancing human speech communication and requires low-latency

operation in many situations, real-time and online VC methods using GMMs [30] and

DNN [1] have been studied. Real-time VC is challenging due to the requirement of the

small amount of time delay (e.g., 50 ms) and generally suffers from the degradation of

converted-speech quality.

Among the VC paradigms mentioned thus far, this thesis focuses on parallel VC meth-

ods based on spectral differentials to develop a high-quality real-time VC system that can

naturally extend human speech communication. Spectral-differential VC has the advan-

tage of generating the output speech with filtering instead of synthesizing the waveform

from speech features, thus achieving high-quality converted speech with a simple struc-

ture. It estimates a filter that provides the difference between the spectral envelopes of the

source and target speakers and convolves it into the source speech waveform. The original

spectral-differential VC method [31] uses a MLSA filter [39] to filter a source speech, but

Suda et al. found that using a minimum-phase filter achieves higher converted-speech

quality than using a MLSA filter [32]. Regarding the minimum-phase filter, an acoustic

model (e.g., a DNN) outputs a real cepstrum of the converted speech, and the Hilbert

transform using a lifter with fixed parameters determines the phases of the filter from the

real cepstrum. These processes are suitable for the aim of this thesis because their com-

putational costs (i.e., filter design) are very low. However, since the minimum-phase filter

is not guaranteed to have a short tap length (i.e., the number of samples of the filter), it
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Fig. 2.1. Training and conversion processes of typical VC framework using DNN-based

acoustic model.

increases the computational cost of filtering. Furthermore, there are two problems when

extending this method from narrow-band VC to full-band VC: 1) converted-speech quality

degrades due to large fluctuations in the high-frequency band, and 2) computational cost

is high (mainly in the filtering operation) due to increased sampling points.

The rest of this chapter is organized as follows. Section 2.2 describes the typical statis-

tical parametric VC framework using a DNN-based acoustic model. Section 2.3 presents

a more detailed explanation about conventional real-time VC methods and their limi-

tations. Section 2.4 reviews the concept of spectral-differential VC and describes the

detailed operation of the spectral-differential VC method with a minimum-phase filter,

the conventional method discussed in this thesis.

2.2 Overview of typical VC framework

VC converts speaker-dependent non-linguistic features, including the formant and pitch

of original speech. Figure 2.1 shows the training and conversion processes of typical

VC framework using a DNN-based acoustic model. The core part of VC is acoustic

modeling, which estimates the statistical model to provide a mapping from the source

speech waveform X to the target one Y. In the first step, X and Y are decomposed

into X and Y , which are speech-feature sequences that characterize the non-linguistic

information in each time frame of the source speech and target speech, respectively. The
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Fig. 2.2. Schematic diagram of human vocalization mechanism. Air from lungs produces

excitation signals in the vocal cords, and output signal is emitted by filtering

excitation signal with time-varying transfer function controlled by vocal organs.

feature mapping can then be formulated as:

Y = F (X), (2.1)

where F (·) is an ideal mapping function that is approximated with the acoustic model.

In the waveform-synthesis step, the target speech Y is synthesized from the target feature

sequence Y . In Sections 2.2.1 to 2.2.3, more detailed descriptions are given for each step.

2.2.1 Feature analysis

A typical speech-analysis method is model based, with which the input signal is assumed to

be described mathematically by using a model with time-dependent parameters. A source-

filter model, a model based on the human vocalization mechanism, is commonly used with

many statistical VC methods, including the proposed methods and the conventional real-

time VC method. In this section, the speech-analysis procedure based on the source-filter

model is described. Figure 2.2 shows a schematic of the human vocal organ. First, the air

from the lungs produces periodic and aperiodic excitation signals in the vocal cords. By

filtering this input signal with a time-varying vocal tract transfer function controlled by

the vocal organs, its frequency response is modulated, finally, the filtered signal is emitted.

The goal with speech analysis is to extract independent and time-aligned speech fea-

tures by separating vocal tract characteristics from excitation components. First, a win-

dow function is applied to the speech signal in the time domain to estimate the spectral

and excitation parameters in a short interval. Figure 2.3 shows the windowed power spec-

trum of the observed signal and the spectral parameter estimated using discrete Fourier
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transform (DFT)-based analysis on the basis of the source-filter model. In accordance

with the source-filter model, the speech signal can be represented as the convolution of

spectral and excitation parameters. Furthermore, the excitation parameter can be decom-

posed into periodic factor (F0) and aperiodic factor (aperiodicity). Statistical parametric

speech synthesis has traditionally used the spectral envelope, F0, and aperiodicity as these

independent speech features. Cepstrum analysis is a well-known and simple method for

non-parametrically extracting the vocal-tract features and excitation component. For sep-

arating the power spectrum into the spectral envelope and fine structures, a cepstrum is

obtained by applying the DFT to the spectrum, where the logarithmic power spectrum

is regarded as a time-domain signal. The low-order cepstrum corresponds to the spectral

envelope, and the higher-order components correspond to the fine structures, as shown

in Figure 2.4. The spectral envelope can then be obtained by extracting the low-order

cepstrum. A mel-cepstrum, which uses the mel scale to take human auditory characteris-

tics into account, is also frequently used as the spectral parameter. Parametric vocoders,

such as STRAIGHT [60] and WORLD [61], generally execute more accurate feature anal-

ysis than DFT-based analysis but require longer time-series information of input speech,

resulting in larger latency.

2.2.2 Acoustic modeling

In acoustic modeling, a statistical model is trained to map the source speech feature to the

target one. As shown in Figure 2.1, the DNN parameterized by θG defines the mapping

Y = G(X; θG) from source speech features X to target speech features Y . In the training
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process, X and Y are extracted by applying the speech analysis to the training dataset.

Parameter θG is then trained to minimize a loss function [62, 26] between the converted

and target feature sequences. The F0 is often linearly converted using the statistics of the

F0 sequences of the source and target speech.

2.2.3 Waveform synthesis

In the last step, the waveform synthesizer generates the output speech waveform Ŷ from

the converted feature sequence Ŷ . Parametric vocoders based on the source-filter model

or neural vocoders are commonly used for waveform synthesis. Parametric vocoders,

e.g., STRAIGHT [60] and WORLD [61], have been traditionally used in speech synthesis

since they enable the handling of each individual feature and facilitate the manipulation

of speech signals. These methods are based on the source-filter model and use overly

simple assumptions during the waveform synthesis. First, during the waveform synthesis

process, it is assumed that features, such as F0 and spectral envelopes, are independent of

each other. Second, they reconstruct a complex frequency spectrum from the amplitude

by using the deterministic minimum-phase reconstruction. These assumptions lead to

significantly lower-quality output speech than human natural speech.

With the recent developments in deep learning, neural vocoders, which directly estimate

the output waveform samples from the input speech features using a single DNN-based

model, have been widely studied. WaveNet [63] models the joint probability of the output

waveform by an autoregressive probability density function and the joint probability can
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Fig. 2.5. Diagram of real-time narrow-band DNN-based VC method proposed in previous

study [1]. It achieves 50 ms algorithmic latency based on typical VC framework

described in Section 2.2.

be decomposed into conditional distributions as

p(y1:T ) =

T∏
t=1

p (yt|y1:T−1) . (2.2)

Due to its high expressive ability, WaveNet can estimate the output waveform from the

mel-spectrogram without the need for hand-engineered features as with conventional para-

metric vocoders. Therefore, it can produce significantly higher-quality speech than para-

metric vocoders and has been actively used with recent VC methods. Since WaveNet’s

waveform-generation process with the autoregressive model incurs high computational

cost, more lightweight neural vocoders [64, 35, 65] have recently been proposed. However,

such models are still computationally expensive and require a large amount of training

data to produce natural speech compared with parametric vocoders.

2.3 Real-time voice conversion

With the typical VC framework described in Section 2.2, utterance-level conversion and

using the long time-series information of input speech are assumed, causing a large time
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delay in the conversion process. For example, when carrying out speech analysis using

WORLD, it is necessary to use a 3/F0 ms window function for extracting the speech

features. Since the main focus of VC is to augment human speech communication, VC

must be real-time and online with limited computational resources for practical applica-

tions. Therefore, it is necessary to reduce computational cost and develop a method of

incrementally processing the short-time windowed waveform of an input utterance.

There has been several studies on real-time VC methods based on the typical frame-

work described in Section 2.2, including GMM-based [30] and DNN-based [1] methods.

Figure [1] shows the diagram of a DNN-based real-time VC method proposed by Arakawa

et al [1]. This method achieves 50 ms algorithmic latency and real-time conversion of

narrow-band (16 kHz-sampled) speech using a single CPU on a laptop PC.

However, such methods still have many limitations. First, real-time VC should incre-

mentally handle short-time input segments of several tens of milliseconds, which makes it

difficult to execute feature analysis with parametric vocoders. Therefore, the DFT-based

simple analysis method is used for feature extraction, but DFT-based features generally

have larger errors than the features estimated using a parametric vocoder. This leads to

significant quality degradation in the feature mapping and waveform synthesis modules.

In particular, the mismatch between a DFT-based input feature and the vocoder-based

waveform synthesizer causes low-quality output speech compared with utterance-level (i.e.,

offline) VC methods. Also, the high computational cost of the waveform synthesis caused

by using the parametric vocoders cannot be ignored.
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2.4 Conventional spectral-differential VC method

Spectral-differential VC method [31] executes conversion in the waveform domain by ap-

plying a filter that represents the difference between the source and target spectral en-

velopes, whereas the typical VC framework resynthesizes the output waveform from de-

composed and converted speech features. When it is not necessary to change the pitch

(e.g., intra-gender conversion), the excitation parameters can be preserved instead of

transforming them with a statistical model. In this case, only converting the features

that represent the vocal tract characteristics, i.e., spectral envelope, is needed. The core

idea with the conventional spectral-differential VC method is to apply a filter to the input

signal that transforms only the spectral envelope instead of decomposing the input speech

into the independent speech features and only converting the spectral envelope.

The estimation of the filter uses speech features extracted only from the amplitude

spectrum, such as low-order real cepstrum and mel-cepstrum. Therefore, it is necessary

to reconstruct the phase spectrum from the differential features obtained only from the

amplitude information. Typical methods for phase estimation include using MLSA fil-

ters and minimum phase filters. The original spectral-differential VC method uses phase

reconstruction based on the MLSA filter. An MLSA filter has a simple structure that ap-

proximates the mel logarithmic spectrum and is commonly used in traditional parametric

speech synthesis. Suda et al. also used a minimum-phase filter for phase estimation.

This method has been confirmed to be of higher quality than phase reconstruction using

an MLSA filter. However, unlike an MLSA filter, the estimated filter often results in

a long-tap filter, increasing the computational cost in filtering operation. In the follow-

ing sections, as a detailed explanation of the spectral-differential VC, the conventional

spectral-differential VC method based on the minimum phase filter is described.

This section describes the training and conversion processes of the conventional spectral-

differential VC method with a minimum-phase filter (hereafter, “conventional method”).

2.4.1 Training process

Let F (X) =

[
F

(X)
1

⊤
, ...,F

(X)
t

⊤
, ...,F

(X)
T

⊤
]⊤

be a complex frequency spectrum sequence

obtained by applying the short-time Fourier transform (STFT) to an input speech wave-

form, where t represents the frame index and T is the total number of frames. For

simplicity, we now focus on frame t. A low-order real cepstrum C
(X)
t can be extracted

from F
(X)
t [66]. The DNNs then estimate a real cepstrum of differential filter Ĉ

(D)

t from

C
(X)
t . The loss function for t is calculated as L

(MSE)
t =

(
C

(Y)
t − Ĉ

(Y)

t

)⊤ (
C

(Y)
t − Ĉ

(Y)

t

)
,

where Ĉ
(Y)

t is a real cepstrum of converted speech given as Ĉ
(Y)

t = C
(X)
t + Ĉ

(D)

t , and

C
(Y)
t is a real cepstrum of the target speech. The DNNs are trained to minimize the loss
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function for all time frames represented as follows:

L(MSE) =
1

T

T∑
t=1

L
(MSE)
t . (2.3)

2.4.2 Conversion process

The Ĉ
(D)

t is estimated with the DNNs. After the high-order components of the cepstrum

are padded with zeros, Ĉ
(D)

t is multiplied by a time-independent lifter umin for a minimum-

phase filter. The complex frequency spectrum of differential filter F̂
(D)

t can be obtained

by taking the inverse discrete Fourier transform (IDFT) of the liftered cepstrum. The

lifter umin is represented as follows [67]:

umin(n) =


1 (n = 0, n = N/2)

2 (0 < n < N/2) ,

0 (n > N/2)

(2.4)

where N is the number of frequency bins of the DFT. A differential filter in the time

domain f̂
(D)

t is obtained by applying the IDFT to F̂
(D)

t . The tap length of f̂
(D)

t is equal

to N . A more detailed procedure of this minimum-phase recostruction is described in

Appendix B
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2.4.3 Trade-off between computational cost and converted-speech quality

The most computationally expensive step of the conversion process described in Sec-

tion 2.4.2 is that of convolving the differential filter into the source speech waveform.

To reduce computational cost, a simple method of truncating differential filter f̂
(D)

t with

a fixed tap length l (l < N) can be introduced. For example, when the filter length

N = 512, the computational cost of filtering can be reduced by 1/4 by setting l = 128 and

carrying out the convolution using only the first 128 samples of the 512-tap filter. The

l-tap truncated filter is defined as f̂
(l)

t . Since the power of the minimum-phase filter is

concentrated around 0, it is possible to truncate up to a certain length without degrading
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Fig. 2.10. Truncation procedure of minimum-phase filter. To reduce computational cost

in conversion process, a simple method of truncating the differential filter f̂
(D)

t

with a fixed tap length l (l < N) can be introduced. However, this operation

degrades converted-speech quality.

the converted-speech quality. When l is increased, converted-speech quality does not de-

grade, but the computational cost of the filtering operation increases. On the other hand,

when l is decreased, computational cost can be efficiently decreased, but f̂
(l)

t degrades

converted-speech quality.

2.4.4 Extension to full-band VC

When applying the conventional method to full-band VC, there are two problems, i.e., 1)

converted-speech quality degrades due to large fluctuations in the high-frequency band,

and 2) computational cost is high (mainly in filtering) due to increased sampling points.

Problem 1 is that the high-frequency components with high variability are difficult to

predict using a statistical model due to the low correlation between speakers. Problem 2

occurs because the computational cost of the filtering operation depends on the signal

length and filter length, and both lengths increase as the sampling frequency increases.
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Chapter 3

Proposed methods

3.1 Introduction

The conventional method described in Section 2.4 constructs a differential filter using

the deterministic minimum-phase estimation. This method leads to the long-tap dif-

ferential filter and the high computational cost of the synthesis process as described in

Section 2.4.3. This thesis proposes a data-driven phase estimation method with filter

truncation for reducing the computational cost of the waveform synthesis, which accounts

for a large part of the computational cost of spectral-differential VC. This method jointly

trains not only a DNN-based acoustic model but also a lifter with trainable parameters.

Since parameters of the DNNs and the lifter are optimized to maximize conversion accu-

racy with the consideration of a truncated (i.e., short-tap) filter, this method can reduce

the computational cost while preserving conversion accuracy. Whereas the lifter of the

minimum-phase filter is fixed, that of the proposed lifter-training method is trained from

speech data to determine the phases of a truncated filter. The lifter-training method

can be viewed as a framework of DNN-based phase reconstruction from the amplitude

spectrum [68]. Second, to address the problem described in Section 2.4.4 for full-band

VC, this thesis also proposes a frequency-band-wise modeling method based on sub-band

multi-rate signal processing (hereafter, “sub-band modeling method”) [40]. Since the

characteristics of a speech waveform vary significantly from band to band, it is effective

to process the waveform separately for each band. In sub-band WaveNet [69], the speech

waveform is divided into several bands and down-sampled, and the waveform in each band

is processed separately. This method enhances the computational efficiency by reducing

sampling points of signals converted with filtering and improves the converted-speech

quality by modeling only the low-frequency band that contributes to speaker identity and

avoiding high-frequency modeling.

This chapter is organized as follows. Section 3.2 presents training and conversion pro-

cedures of the proposed lifter-training method and analyzes the method from various

aspects. Section 3.3 describes the workflow of the proposed sub-band modeling method

and discusses its effectiveness. In Section 3.4, the proposed methods were evaluated with
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Fig. 3.1. Comparison of proposed lifter-training method and conventional method. Lifter-

training method estimates differential filter with data-driven phase reconstruc-

tion, whereas conventional method uses deterministic minimum-phase recon-

struction.

various objective and subjective experiments.

3.2 Data-driven phase reconstruction with lifter training

This section presents the training and conversion processes of the lifter-training method.

The main difference between this method and the conventional one is with the lifter to

determine the phase of the filter, as shown in Figure 3.1.

3.2.1 Training process

The lifter-training method trains not only DNNs but also a lifter to avoid converted-

speech-quality degradation caused by filter truncation. Let u = [u1, ..., uc]
⊤

be a time-

independent trainable lifter, where c is the dimension of the real cepstrum. The filter-

truncation process with l is integrated into the training, as shown in Figure 3.2.

As described in Section 2.4.1, the DNNs estimate Ĉ
(D)

t from C
(X)
t . Then Ĉ

(D)

t is

multiplied by the trainable lifter u, and the complex frequency spectrum of the differential

filter F̂
(D)

t is obtained from the IDFT of Ĉ
(D)

t and exponential calculation as described in

Section 2.4.2. The differential filter in the time domain f̂
(D)

t is obtained by applying the
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IDFT to F̂
(D)

t . The f̂
(D)

t is truncated to f̂
(l)

t by applying a window function w given as:

f̂
(l)

t = f̂
(D)

t ·w, (3.1)

w =

[
0th
1 , · · · ,

(l−1)th

1 ,
lth
0 , · · · ,

(N−1)th

0

]⊤
. (3.2)

By using the DFT again, a complex spectrum of the l-tap truncated differential filter F̂
(l)

t

can be obtained. A complex spectrum of converted speech F̂
(Y)

t is obtained by multiplying

F
(X)
t by F̂

(l)

t , and the real cepstrum of converted speech Ĉ
(Y)

t is extracted from F̂
(Y)

t .

The parameters of the DNNs and the lifter are jointly trained to minimize the same loss

function as Eq. (2.3). Since all processes of this method are differentiable, the training

can be done by back-propagation [70].

3.2.2 Conversion process

In the conversion process, the trained DNNs and lifter estimate F̂
(D)

t . The f̂
(D)

t is obtained

by applying the IDFT to F̂
(D)

t , and f̂
(l)

t is obtained by truncating with l, as shown

in Figure 3.3. The converted speech waveform can be obtained by applying the l-tap

truncated filter f̂
(l)

t to the source speech waveform. In the training process, the parameters

of DNN and the lifter coefficient u were optimized while the filter truncation to tap length

l was taken into account. Therefore, it is expected to be able to truncate the filter to tap

length l without degrading the conversion accuracy.

3.2.3 Discussion

With the conventional method, the cepstrum is multiplied by the lifter coefficient to

determine the shape of the filter to have minimum phase. Although the shape of the

differential filter changes due to truncation, it is transformed to compensate for the effect

of the truncation by applying the Hilbert transform using the lifter trained with the

proposed lifter-training method. As a result, the lifter-training method can reduce the

calculation amount while suppressing converted-speech quality degradation caused by the

filter truncation. Figure 3.4 shows the cumulative power distribution of the differential

filter with the conventional method (l = 512) and the proposed lifter-training method

(l = 32). The values on the vertical axis are normalized with the cumulative total. We

can see that the proposed lifter-training method concentrates the power in the short taps

whereas the conventional method does not. Figure 3.5 also shows the difference between

the lifter trained with the proposed method (l = 64) and that for minimum phasing.

The trained lifter is entirely different from that with the conventional method and has

a complicated shape. Figure 3.6 shows zero plots with truncated (l = 32) differential

filters using the conventional method and the proposed lifter-training method. Some

zeros are distributed outside the unit circle in the conventional method because the shape

of the filter changes by truncating the estimated minimum-phase filter. The proposed
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Fig. 3.3. Conversion procedure with proposed lifter-training method.

lifter-training method works to correct the distribution of the zeros to the inside of the

unit circle, suggesting that the proposed lifter-training method compensates for the shape

change of the filter caused by filter truncation and estimate short-tap filter while avoiding

accuracy deterioration. Furthermore, most of the zeros with the conventional method

are located near the unit circle, while the zeros with the proposed lifter-training method
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Fig. 3.5. Difference between lifter trained with proposed lifter-trained method (l = 64)

and that for minimum phasing with conventional method

are relatively far from the circle. This result indicates that the proposed lifter-training

method flattens the amplitude-frequency characteristics of the differential filter. Note

that we used the female-to-female data pairs described in Section 3.4.1 and down-sampled

them to 16 kHz to get the results shown in Figure 3.4 and Figure 3.5.

As explained in Section 3.1, liftering-based phase estimation requires only small com-



Chapter 3 Proposed methods 23

1.0 0.5 0.0 0.5 1.0 1.5
1.0

0.5

0.0

0.5

1.0

1.5

Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O
Re

Im

O

Conventional
Proposed

Fig. 3.6. Zero plots of differential filters with conventional method and proposed lifter-

training method.

putation. Since the lifter-training method adopts the same estimation as the conventional

method, there is no increase in computational cost of phase estimation.

In this thesis, the lifter-training method was applied to VC, i.e., speaker conversion.

It is expected that this method can be applied to other tasks processed by filtering, e.g.,

source separation and speech enhancement.

3.3 Frequency-band-wise modeling with sub-band multirate

processing

As described in Section 2.4.4, when using the conventional method for full-band VC, 1)

converted-speech quality degrades due to large fluctuations in the high-frequency band,

and 2) computational cost is high (mainly in the filtering operation) due to increased

sampling points. The sub-band modeling method is used to solve these problems. This

method divides the full-band source speech into multiple sub-band signals and only con-

verts the lowest-band signal with the differential filter. Figure 3.7 shows the workflow
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Fig. 3.7. Workflow of the sub-band modeling method for full-band VC. It divides full-

band source speech into multiple sub-band signals and only converts lowest-

band signal with differential filter. Full-band converted speech is synthesized

from sub-band signals.

of this method. After the full-band signal is divided into sub-band signals by sub-band

analysis (Section 3.3.1), they are converted with the trained model (Section 3.3.2), and

the full-band converted speech is obtained by sub-band synthesis (Section 3.3.3).

The 0–8 kHz signal converted with this method is consistent with the bandwidth handled

with the conventional method for narrow-band VC, and with the bandwidth of wide-

band speaker verification [71]. Therefore, it is reasonable to focus on this bandwidth

in converting speaker identity. Since 8–24 kHz signal contributes to speech quality, the

output-speech quality can be enhanced by directly using the input signal. Unlike other VC

methods, such as seq-to-seq VC [72, 25, 73], the number of frames of the lowest-band signal

does not change between the input and output speech. Since the converted-lowest-band

signal is frame-wise synchronized with the higher-band signals, the full-band converted

speech can be directly synthesized without time alignment.
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3.3.1 Sub-band analysis

An original full-band signal x (t) is divided into N sub-band streams (N = 3 in this

paper), and modulated by W
−t(n−1/2)
N and shifted to the base band (Figure 3.8 (a)):

xn (t) = x (t)W
−t(n−1/2)
N , (3.3)

where n = 1, 2, · · · , N is a frequency-band index, and WN = exp (j2π/2N). Then xn (t)

is bandlimited using low-pass filter f (t) (Figure 3.8 (b)):

xn,pp (t) = f (t) ∗ xn (t) , (3.4)

where the cutoff frequency of f (t) is π/2N , and ∗ represents the convolution operator.

By introducing single-sideband (SSB) modulation, real-valued signal xn,SSB (t) is obtained
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Fig. 3.9. Spectrograms of (a) converted speech obtained by applying differential filter to

full-band source speech, (b) converted speech obtained by applying differential

filter to only lowest-band signal, and (c) full-band target speech.

(Figure 3.8 (c)):

xn,SSB (t) = xn,pp (t)W
t/2
N + x∗

n,pp (t)W
−t/2
N , (3.5)

where ·∗ denotes the complex conjugate. The n-th sub-band waveform xn (k) is obtained

with decimation (Figure 3.8 (d)):

xn (k) = xn,SSB (kM) . (3.6)



Chapter 3 Proposed methods 27

3.3.2 Training and conversion processes

In the training process, the acoustic model is trained as described in Section 2.4.1 or

Section 3.2.1 using only the lowest-band signal (n = 1). This training process improves

the converted-speech quality by modeling only the low-frequency band that contributes

to speaker identity and avoiding high-frequency modeling. In the conversion process, only

the lowest-band signal is converted, as described in Section 2.4.2 or Section 3.2.2, and

higher-band signals are not converted. The computational efficiency can be enhanced by

using this conversion because it reduces sampling points of signals converted with filtering.

3.3.3 Sub-band synthesis

To synthesize a full-band signal, the converted sub-band signals x̂n (t) are up-sampled as

follows:

x̂n,SSB (t) =

x̂n (t/M) (t = 0,M, 2M, · · · )

0 (otherwise) .
(3.7)

The x̂n,SSB (t) is shifted to the base band, and bandlimited with low-pass filter g (t)

(Figure 3.8 (e)):

x̂n,pp (t) = g (t) ∗
(
x̂n,SSB (t)W

−t/2
N

)
. (3.8)

Finally, the full-band signal x̂ (t) is synthesized (Figure 3.8 (f)):

x̂ (t) =

N∑
n=1

{
x̂n,pp (t)W

t(n−1/2)
N + x̂∗

n,pp (t)W
−t(n−1/2)
N

}
. (3.9)

3.3.4 Discussion

The number of sub-band streams N is a hyperparameter. When N increases, the band-

width to pass through the input signal also increases. This enhances speech quality but

degrades speaker similarity. On the other hand, when N decreases, speech quality and

computational efficiency decrease because the bandwidth to convert the input signal in-

creases. As a result of a preliminary experiment, N = 3 is used as shown in Figure 3.7,

which achieves the best speaker similarity and speech quality.

In this study, the mid-band (8–16 kHz) and high-band (16–24 kHz) signals are passed

through. The simplest way to further improve speaker similarity is to convert the mid-

band and high-band signals by using statistical models. In a preliminary experiment, the

method of converting the mid-band and high-band signals by using a DNN was evaluated

and it was confirmed that the converted-speech quality degraded. Another method of

transforming the high-frequency band, which eliminates the phase mismatch between the

filtered low-frequency signal and the original high-frequency signal, was also investigated.
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This method constructs an all-pass filter with an amplitude response of 1 at all frequencies

and the same phase as the filter applied to the low-frequency band, and it is applied to the

high-frequency band. Results of a preliminary experiment based on subjective evaluation

indicated that the converted speech quality with the case where the all-pass filter was

applied to the high-frequency band was lower in some conditions than that with the case

where the high-frequency band was passed through. In this study, the method of passing

through the high-frequency band was adopted based on these preliminary experiments.

Figure 3.9 shows the spectrograms of the converted speech obtained by applying the

differential filter to the full-band source speech (defined as “benchmark” in Section 3.4),

the converted speech obtained by applying the filter to only the lowest-band signal, and

the full-band target speech. In these results, the female-to-female data pairs described

in Section 3.4.1 was used. When applying the differential filter to the full-band source

speech, the accuracy of estimating the differential spectrum by using a DNN degrades and

the over-smoothing of the spectrum can be observed in the whole band (Figure 3.9 (a)).

When applying the differential filter only to the lowest band, however, the DNN can

estimate the differential spectrum of the lowest band with high accuracy, and the fine

structures of the spectrum can be observed. (Figure 3.9 (b)).

The sub-band modeling method can significantly reduce the computational cost for

full-band VC because it can decrease both the source-signal length and the filter length.

Furthermore, the lifter-training method with filter truncation can be used when convert-

ing the lowest-band signal for further reducing the computational cost of the filtering

operation.

3.4 Evaluations

The effectiveness of the proposed methods, lifter training described in Section 3.2 and sub-

band modeling described in Section 3.3, were investigated. In this evaluation, the proposed

methods and conventional method were implemented in the form of offline conversion.

Two intra-gender VC cases, for female-to-female (f2f) and male-to-male (m2m) conversion,

were evaluated.

3.4.1 Evaluation conditions

The source and target speakers in female-to-female conversion were stored in the JSUT

corpus [74] and Voice Actress Corpus [75], respectively. Those in male-to-male conversion

were stored in the JVS corpus [76]. 100 utterances (approx. 12 min.) were used for each

speaker, and the numbers of utterances for training, validation, and test data were 80, 10,

10, respectively.

Narrow-band (16 kHz-sampled) speech and full-band (48 kHz-sampled) speech were

used for the evaluation of the proposed lifter-training method. In the narrow-band case,

the window length was 25 ms, frame shift was 5 ms, the fast Fourier transform (FFT)
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length was 512 samples, and number of dimensions of the cepstrum was 40 (0th-through-

39th). In the full-band case, the window length and frame shift were the same as those in

the narrow-band case, but the FFT length was 2048 samples, and number of dimensions

of the cepstrum was 120 (0th-through-119th). For pre-processing, the silent intervals of

training and validation data were removed, and the lengths of the source and target speech

were aligned by DTW. Furthermore, full-band (48 kHz-sampled) speech was used for the

evaluation of the sub-band modeling method. When applying the sub-band modeling

method, only the lowest-band signal (0–8 kHz) was analyzed and the same settings for

the speech analysis as that in the evaluation of the lifter-training method with narrow-

band speech were applied. For the case without the sub-band modeling method, the same

settings as that in the evaluation of the lifter training method with full-band speech were

used.

The DNN architecture of the acoustic model was multi-layer perceptron consisting of

two hidden layers. The hyperparameters of the DNN were determined using Optuna [77],

with the numbers of each hidden unit set to 280 and 100 for the narrow-band signal and

set to 840 and 300 when applying the conventional method to full-band VC without the

sub-band modeling method. The DNNs consisted of a gated linear unit [78] including the

sigmoid activation layer and tanh activation layer, and batch normalization [79] was car-

ried out before applying each activation function. Adam [80] was used as the optimization

method. During training, the cepstrum of the source and target speech was normalized to

have zero mean and unit variance. The batch size and number of epochs were set to 1,000

and 100, respectively. The model parameters of the DNNs used with the proposed lifter-

training method were initialized with the conventional method. The initial value of the

lifter coefficient was set to that of the lifter for minimum phasing. For narrow-band VC,

the learning rates for the conventional method and proposed lifter-training method were

set to 0.0005 and 0.00001, respectively. In the full-band case without the sub-band model-

ing method, the learning rates for the conventional and proposed lifter-training methods

were set to 0.0001 and 0.000005, respectively. When applying the sub-band modeling

method to full-band speech, the same training settings as that with the narrow-band case

were used.

The proposed lifter-training method was evaluated using both narrow-band (16 kHz)

and full-band (48 kHz) speech. The truncated tap length l for the narrow-band case was

128, 64, 48, and 32, and that for the full-band case was 224 and 192. When evaluating

the proposed sub-band modeling method, the truncated tap length l was set to 32 and

48.

3.4.2 Evaluation of lifter-training method

Objective evaluation

Root mean squared errors (RMSEs) of the proposed lifter-training method and conven-

tional method were compared when changing l. The truncated tap length l was set to
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Fig. 3.10. RMSEs of lifter-training (“Proposed”) and conventional methods at each l in

narrow-band (16 kHz) VC

128, 64, 48, and 32. The RMSEs were obtained by taking the squared root of Eq. (2.3).

Figure 3.10 shows a plot of the RMSEs in m2m and f2f cases VC using narrow-band speech

(16 kHz). The proposed lifter-training method achieved higher-precision conversion than

the conventional method for all l. The differences in the RMSEs between the proposed

and conventional methods also tended to become more significant when l was smaller.

This result indicates that the proposed lifter-training method can reduce the effect of

filter truncation.

Subjective evaluation

To investigate the effectiveness of the proposed lifter-training method, a series of preference

AB tests on speech quality and XAB tests on speaker similarity of converted speech was

conducted. Thirty listeners participated in each of the evaluations through a crowd-

sourced evaluation systems [81], and each listener evaluated ten speech samples. A t-test

with a significance level α of 0.05 was used. The target speaker’s natural speech was used

as the reference X in the preference XAB tests. The same conditions were used for all the

XAB and AB tests.

First, the narrow-band (16 kHz-sampled) case was evaluated. In the preliminary exper-

iments, it is confirmed that the converted-speech quality with the conventional method

significantly deteriorated when we truncate the filter length to 32 and 48. Therefore, sev-

eral settings of the conventional method and proposed lifter-training method with l = 32

and 48 were compared. Table 3.1 lists the results for narrow-band (16 kHz) VC. Com-

pared to the truncated conventional method (“Conventional (l = 32, 48)”), we can see
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Table 3.1. Preference scores with lifter-training (“Proposed”) and conventional methods

in narrow-band case (16 kHz)

(a) Speaker similarity

Spkr Proposed Score p-value Conventional

m2m

l = 32 0.587 vs. 0.413 1.3 × 10−5 l = 32

l = 32 0.463 vs. 0.537 7.3 × 10−2 l = 512

l = 48 0.533 vs. 0.467 1.0 × 10−1 l = 48

l = 48 0.550 vs. 0.450 1.4 × 10−2 l = 512

f2f

l = 32 0.642 vs. 0.358 < 10−10 l = 32

l = 32 0.543 vs. 0.457 3.4 × 10−2 l = 512

l = 48 0.613 vs. 0.387 1.3 × 10−8 l = 48

l = 48 0.548 vs. 0.452 2.0 × 10−2 l = 512

(b) Speech quality

Spkr Proposed Score p-value Conventional

m2m

l = 32 0.687 vs. 0.313 < 10−10 l = 32

l = 32 0.529 vs. 0.471 2.3 × 10−1 l = 512

l = 48 0.606 vs. 0.394 8.7 × 10−8 l = 48

l = 48 0.523 vs. 0.477 2.6 × 10−1 l = 512

f2f

l = 32 0.807 vs. 0.193 < 10−10 l = 32

l = 32 0.742 vs. 0.258 < 10−10 l = 512

l = 48 0.581 vs. 0.419 5.5 × 10−5 l = 48

l = 48 0.513 vs. 0.487 5.1 × 10−1 l = 512

that the proposed lifter-training method significantly outperformed the conventional one

in terms of speaker similarity and speech quality. Also, compared to the non-truncated

conventional method (“Conventional (l = 512)”), the proposed lifter-training method

(“Proposed (l = 32, 48)”) had the same or higher quality. These results indicate that

the proposed lifter-training method can reduce the tap length to 1/16 without degrad-

ing converted-speech quality whereas the truncated conventional method significantly de-

grades converted-speech quality.

The same tendency can be seen in the full-band (48 kHz) case, as shown in Table 3.2.

The proposed method with l = 224 had the same converted-speech quality as the non-

truncated conventional method, but the proposed lifter-training method with l = 192

degraded speaker similarity and speech quality. Therefore, the proposed lifter-training

method can significantly reduce the tap length in the full-band case, though not as much

as the narrow-band case.
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Table 3.2. Preference scores with proposed lifter-training and conventional methods in

full-band case (48 kHz)

(a) Speaker similarity

Proposed Score p-value Conventional

l = 192 (m2m) 0.431 vs. 0.569 4.9 × 10−4 l = 2048 (m2m)

l = 192 (f2f) 0.519 vs. 0.481 3.4 × 10−1 l = 2048 (f2f)

l = 224 (m2m) 0.474 vs. 0.526 2.0 × 10−1 l = 2048 (m2m)

l = 224 (f2f) 0.519 vs. 0.481 3.4 × 10−1 l = 2048 (f2f)

(b) Speech quality

Proposed Score p-value Conventional

l = 192 (m2m) 0.529 vs. 0.471 2.3 × 10−1 l = 2048 (m2m)

l = 192 (f2f) 0.447 vs. 0.553 8.9 × 10−3 l = 2048 (f2f)

l = 224 (m2m) 0.513 vs. 0.487 5.2 × 10−1 l = 2048 (m2m)

l = 224 (f2f) 0.517 vs. 0.483 4.2 × 10−1 l = 2048 (f2f)

Table 3.3. Preference scores with combination of proposed methods and benchmark in

full-band (48 kHz) VC

(a) Speaker similarity

Spkr Proposed Score p-value Benchmark

m2m
l = 32 0.537 vs. 0.463 7.3 × 10−2 l = 2048

l = 48 0.493 vs. 0.507 7.4 × 10−1 l = 2048

f2f
l = 32 0.516 vs. 0.484 2.5 × 10−1 l = 2048

l = 48 0.475 vs. 0.525 8.3 × 10−2 l = 2048

(b) Speech quality

Spkr Proposed Score p-value Benchmark

m2m
l = 32 0.840 vs. 0.160 < 10−10 l = 2048

l = 48 0.828 vs. 0.172 < 10−10 l = 2048

f2f
l = 32 0.810 vs. 0.190 < 10−10 l = 2048

l = 48 0.593 vs. 0.407 4.2 × 10−6 l = 2048

3.4.3 Evaluation of sub-band modeling method

A combination of the lifter-training and sub-band modeling methods (hereafter, “sub-band

lifter modeling method”) was evaluated in the full-band VC. The conventional method

simply extended to full-band VC without the sub-band modeling method (Section 2.4.4)

was defined as the benchmark, which was also used in the following sections. The tap
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length of the differential filter was 2048 in the benchmark. With sub-band lifter modeling

method, the tap length of the filter was truncated to 48 and 32. Table 3.3 shows the results

of XAB tests on speaker similarity and AB tests on speech quality. In terms of speaker

similarity, there were no significant differences between sub-band lifter modeling method

and the benchmark. On the other hand, sub-band lifter modeling method significantly

outperformed the benchmark in terms of speech quality. Therefore, it is confirmed that

the combination of the proposed methods can improve converted-speech quality while

significantly reducing computational cost.
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Chapter 4

Implementation of real-time, online,

full-band voice conversion system

4.1 Introduction

Chapter 3 proposed computationally efficient and high-quality VC methods based on the

spectral-differential VC method. This chapter presents the implementation of the online

full-band VC system by combining these methods. Figure 4.1 shows the diagrams of the

offline VC method evaluated in Chapter 3 and the online VC system. The offline VC

method performs sub-band processing for each utterance and transforms each sub-band

utterance separately. The online VC system incrementally receives a windowed waveform

and divides the waveform into multiple frequency bands. Figure 4.2 shows the pipeline

of the online system. It receives a 5-ms waveform of source speech and outputs a 5-ms

waveform of the converted speech.

This chapter is organized as follows. Section 4.2 describes the basic structure of the

full-band online VC system. Section 4.3 also presents several techniques for enhancing the

performance of the online VC system without increasing the computational cost during

conversion. Section 4.4 first evaluate the computational performance of the real-time full-

band VC system based on the theoretical complexity and the experiments using a CPU.

Finally, the effectiveness of the enhancing techniques is investigated and the comprehensive

evaluations of the real-time VC system are presented.

4.2 Basic structure

This section describes the basic structure of the proposed online full-band VC system,

which consists of analysis, conversion, and synthesis steps.
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Sub-band analysis

Conversion

0-8 kHz 8-24 kHz

Pass through
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Sub-band analysis

Pass throughConversion

0-8 kHz 8-24 kHz

Sub-band synthesis

Offline VC Online (streaming) VC

Fig. 4.1. Comparison of offline VC method and online VC system. Online VC system

incrementally receives windowed waveform, whereas offline VC method performs

utterance-level conversion.

4.2.1 Analysis step

In the analysis step, the system extracts the input feature of the DNN. First, the Hanning

window is applied to the input frame obtained from full-band source speech and use the

sub-band multi-rate signal processing described in Section 3.3. To reduce the redundancy

of the source cepstrum, a first-order pre-emphasis filter E(z) = 1−αz−1 is applied to the

lowest-band signal, with α = 0.97. The low-order cepstrum C(X) is then extracted by

applying DFT analysis to the frame of the lowest-band signal.

4.2.2 Conversion step

In the conversion step, the VC system constructs a time-domain differential filter from

C(X), as mentioned in Section 3.2. The DNN estimates the real cepstrum of the differential

filter Ĉ
(D)

from the real cepstrum of the source speech C(X), and the truncated differential

filter f̂
(l)

is constructed from the real cepstrum using a minimum-phase filter or data-

driven phase proposed in Section 3.2.

Since spectral-differential VC method can only convert vocal tract characteristics, F0

transformation is incorporated into the system for cross-gender conversion using a direct

waveform modification with PICOLA [82]. This method is more computationally efficient

and suitable for the purpose of this thesis than vocoder-based F0 transformation. In the

pre-processing for the training process, the average F0 values of source and target speakers
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8-24 kHz

Processing each frame within 5 ms

Hilbert transform
Filter truncationDNN

F0 transformation
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⊗
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5 ms shift

Fig. 4.2. Pipeline of real-time, online, full-band VC system. It consists of analysis step,

conversion step, synthesis step, and other modules including F0 transformation

mechanism in waveform domain and preemphasis filter for enhancing feature

analysis.

are first calculated using the training set. The average F0 γ ratio is written as:

γ =
F0target

F0source
, (4.1)

where F0source and F0target are the average F0 values of source and target speakers, re-

spectively. Then the F0 of source speech is transformed by the ratio γ using PICOLA

and the training process descried in Section 3 is executed using the transformed source

speech and target speech. In the conversion process, the input short-time waveform is

transformed by the ratio γ and sent to the online VC system as shown in Figure 4.2.

4.2.3 Synthesis step

In the synthesis step, the converted speech can be obtained by applying the truncated

differential filter f̂
(l)

to the source speech waveform. Then the de-emphasis filter D(z) =

1/
(
1 − αz−1

)
is applied to the converted-lowest-band signal. The higher-band signals

are passed through instead of being converted with a differential filter. The frame of the

full-band converted signal can be synthesized from the processed lowest-band signal and

higher-band signals. Finally, the frame is overlap-added to the previous calculation results

and the first 5-ms waveform is output.
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4.3 Methods for enhancing performance of proposed online VC

system

This section presents several methods for enhancing naturalness and speaker similarity

of converted speech obtained with the online VC system. Since all the methods are for

training data refinement or DNN training, they do not increase the computational cost of

the VC system during conversion.

4.3.1 F0 equalization in pre-processing

In the analysis step of the VC system, the spectral envelope component should be calcu-

lated independently of the excitation components. The well-known method for estimating

the spectral envelope is a high-quality vocoder, e.g., WORLD [61]. However, it is not

practical in real-time VC due to its high computational cost and large time delays for

analysis. Therefore, a real cepstrum of a DFT spectrum*1 is used. However, a real cep-

strum of a DFT spectrum suffers from the excitation component [83]. This fact affects not

only the analysis step but also the conversion step; the DNN has to predict the excitation

differences between speakers in addition to spectral-envelope differences. Such prediction

becomes more difficult than the prediction of only spectral-envelope differences and de-

grades the prediction accuracy. Therefore, this thesis uses data refinement methods so

that the DNN predicts only spectral-envelope differences.

Figure 4.3 shows these methods. The essential point is to remove F0 differences between

speakers, i.e., one speaker’s F0 is equalized to the other speaker’s one. After aligning

the source speaker’s frames and target speaker’s frames using the dynamic time warping

algorithm, temporally aligned F0, a spectral envelope, and aperiodicity can be obtained

using WORLD (Figure 4.3(a)). There are two options to equalize the F0s; equalizing

the source speaker’s F0 to the target speaker’s (Figure 4.3(b)) or its inverse procedure

(Figure 4.3(c)). The former replaces F0 of the source speech with that of the target

speech and synthesizes a speech waveform. The synthesized waveform is used as a new

source speech waveform of the training data. The latter is their inverse, i.e., a method

that exchanges “source” and “target” of the above sentences. When using a real-time

F0 transformation method (see 2nd paragraph of Section 4.2.2) during conversion, this

method is applied to the source speech and the above F0 equalization is carried out.

The above pre-processing of the training data efficiently removes F0 differences between

speakers. Therefore, prediction by using a DNN is expected to become less affected by

*1 The most simple solution is to use the vocoder during only training. In this solution, we use a real

cepstrum of the WORLD’s spectral envelope during training and use that of a DFT spectrum during

conversion. However, in the preliminary experiment, we found that such a method significantly

degraded converted-speech quality.
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Fig. 4.3. Procedure of F0 equalization methods in pre-processing. (a) DTWed WORLD

features are first obtained. “SP” and “AP” indicate spectral envelope and ape-

riodicity, respectively. Then there are two options for equalizing F0: (b) F0 of

source speech is replaced with that of target speech and (c) its inverse procedure.

Re-synthesized waveform becomes a new source or target speech waveform of

training data. When using F0 transformation described in Section 4.2.2, it is

applied to source speech in advance.

F0.

4.3.2 Vocoder-guided training

The F0 equalization method uses a vocoder to alleviate the effect of F0 differences in

the training data. This section presents a method of using a vocoder for DNN training

to enhance the alleviation effect. As a pre-process, the spectral envelopes of the source

speech and target speech are extracted with WORLD because it is more robust against

F0 compared with DFT-based analysis. From the source and target speech in the training

data, not only real cepstra of DFT spectra, C
(X)
t and C

(Y )
t , but also those of WORLD

spectral envelopes denoted as c
(X)
t and c

(Y )
t are extracted. In DNN training, the extra

term L(VOC) is added to the loss function as

L(MSE) + λL(VOC) =
1

T

T∑
t=1

(
C

(Y)
t − Ĉ

(Y)

t

)⊤ (
C

(Y)
t − Ĉ

(Y)

t

)
+

λ

T

T∑
t=1

(
c
(D)
t − Ĉ

(D)

t

)⊤ (
c
(D)
t − Ĉ

(D)

t

)
, (4.2)

where λ is a weight parameter of vocoder-guided training and c
(D)
t = c

(Y )
t − c

(X)
t . This

training method works to match the predicted spectral differentials of the DFT spectra

and those of the WORLD spectral envelopes. Since c
(D)
t is ideally independent on F0,
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this training helps predict F0-independent spectral differentials. Note that a loss function

that directly matches c
(Y )
t and Ĉ

(Y )

t cannot be added. This is because Ĉ
(Y )

t is explicitly

calculated by DFT and IDFT.

4.3.3 Statistical compensation training

The well-known method for improving VC quality is to compensate for the statistics

of the converted features, e.g., GAN-based compensation [26]. Global variance (GV)

compensation [22], which alleviates the over-smoothing effect of converted spectra, is

introduced for improving converted-speech quality of the VC system. The full objective

by adding the loss term for the GV compensation can be written as

L(MSE) + µL(GV)

=
1

T

T∑
t=1

(
C

(Y)
t − Ĉ

(Y)

t

)⊤ (
C

(Y)
t − Ĉ

(Y)

t

)
(4.3)

+
µ

T

T∑
t=1


(
C

(Y)
t − 1

T

T∑
τ=1

C(Y)
τ

)2

−

(
Ĉ

(Y)

t − 1

T

T∑
τ=1

Ĉ
(Y)

τ

)2
 .

4.4 Evaluations

The computational efficiency and converted-speech quality of the online VC systems were

evaluated for both narrow-band and full-band VC. Note that the online narrow-band VC

system was implemented in the same manner as Section 4. In addition to the intra-gender

VC cases, two cross-gender VC cases, female-to-male (f2m) and male-to-female (m2f)

conversion, were used for this evaluation.

4.4.1 Evaluation conditions

The source and target speakers in the f2f case were stored in the JSUT corpus [74] and

Voice Actress Corpus [75], respectively. Those in m2m, f2m and m2f cases were stored

in the JVS corpus [74]. 100 utterances (approx. 12 min.) were used for each speaker,

and the numbers of utterances for training, validation, and test data were 80, 10, and 10,

respectively. For speech analysis and DNN tranining, the same settings as described in

Section 4.4.1 were used.

An Intel (R) Core i7-6850K CPU @ 3.60 GHz was used in the evaluation of processing

time to show the effectiveness of the online VC system in a CPU environment. The

weight of vocoder-guided training λ and that of GV compensation µ were set to 10 and

100, respectively. In the preliminary experiment, three methods for data augmentation,

pitch shift, time stretch, and time shift, were used referring to Arakawa et al.’s study [1].

As a result, the data augmentation did not improve the converted-speech quality in both

intra- and cross-gender cases, so it was not applied in the following evaluations.
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Table 4.1. Preference scores with online VC system described in Section 4.2 and offline

VC described in Section 3.3.

(a) Speaker similarity

Spkr Score p-value

m2m online 0.493 vs. 0.506 7.4 × 10−1 offline

f2f online 0.486 vs. 0.513 5.1 × 10−1 offline

(b) Speech quality

Spkr Score p-value

m2m online 0.517 vs. 0.483 4.2 × 10−1 offline

f2f online 0.490 vs. 0.510 6.2 × 10−1 offline

4.4.2 Comparison of online and offline VC

To evaluate online conversion, the converted-speech quality of the online VC system de-

scribed in Section 4.2 was compared with that of offline VC described in Section 3.3. As

a subjective evaluation, a series of AB tests on speech quality and XAB tests on speaker

similarity was conducted. In this evaluation, pre-emphasis and enhancing techniques de-

scribed in Section 4.3 were not applied to the online conversion to compare under fair

conditions. Furthermore, the filter was not truncated in both online and offline conver-

sions because the effect of filter truncation is expected to be the same with both VC

methods. Table 4.1 shows that there is no significant difference between online and of-

fline conversions in terms of both speaker similarity and speech quality. Therefore, it

is confirmed that online conversion shows the same converted-speech quality as offline

conversion.

4.4.3 Computational complexity and processing time of proposed online VC

system

Computational complexity

In this section, the complexity of the online VC systems was estimated as an evaluation of

computational efficiency. The online full-band VC system consists of sub-band processing

(“Sub-band”), cepstrum analysis (“Cepstrum”), inference with the DNN (“Inference”),

the Hilbert transform (“Hilbert trans.”), and filtering (“Filtering”). The complexity of

each process can be calculated from the parameters in Section 3.4.1. The complexity

was converted to floating point operations per second, i.e., FLOPS and 0.300 GFLOPS

complexity was considered for other neglected calculations (“Other”), e.g., pre-emphasis

and F0 transformation. In the same manner, the complexity of the online narrow-band

VC system was calculated considering 0.100 GFLOPS for neglected operations.
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Table 4.2. Estimated complexity and measured RTF of online VC system in narrow-band

(16 kHz) and full-band (48 kH) cases.

(a) Complexity (GFLOPS)

Frequency Tap length Sub-band Cepstrum Inference Hilbert trans. Filtering Other Total

Narrow-band

Full-tap

- 0.043 0.330 0.041

1.399

0.100

1.91

1/4-tap 0.350 0.86

1/16-tap 0.088 0.60

Full-band

Full-tap

1.430 0.043 0.330 0.041

1.399

0.300

3.54

1/4-tap 0.350 2.50

1/16-tap 0.088 2.23

(b) RTF

Frequency Tap length Sub-band Cepstrum Inference Hilbert trans. Filtering Other Total

Narrow-band

Full-tap

- 0.005 0.133 0.008

0.190

0.012

0.35

1/4-tap 0.052 0.21

1/16-tap 0.015 0.17

Full-band

Full-tap

0.308 0.005 0.133 0.008

0.264

0.052

0.77

1/4-tap 0.070 0.58

1/16-tap 0.020 0.53

Table 4.2(a) lists the results when the filter was full-tap (512 taps), truncated to 1/4

tap length and truncated to 1/16 tap length in the narrow-band and full-band cases. In

the narrow-band case, the total complexity was 0.86 GFLOPS with the 1/4-tap filter and

0.60 GFLOPS with the 1/16-tap filter, whereas the complexity with the full-tap filter

was 1.91 GFLOPS. These results indicate that the total complexity can be significantly

reduced by using the proposed lifter-training method with filter truncation and the on-

line narrow-band VC system achieves real-time conversion with a CPU of a single board

computer (e.g., Raspberry Pi). In the full-band case, the online VC system attained

2.50 GFLOPS with 1/4-tap filter and can convert full-band speech with lower computa-

tional cost than LPCNet [65] for narrow-band (16 kHz) waveform synthesis. Note that

the total complexity was around 20 GFLOPS with the benchmark, and the key difference

is the filtering operation, which requires around 16.8 GFLOPS with benchmark and can

be reduced to around 0.1 GFLOPS with the proposed system. Therefore, it is confirmed

that filter truncation and sub-band processing can efficiently reduce computational cost.

The complexity of sub-band processing is more dominant than complexity reduction with

the lifter-training method, but the computational cost of the whole system can further be

reduced by incorporating our lifter-training method.

Processing time

To evaluate the computational performance of the online VC systems, the processing time

was measured with a single CPU then calculated the real-time factor (RTF) by dividing

the average processing time of frames within an utterance by the length of the input
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waveform (i.e., 5 ms). Table 4.2(b) lists the results. In the full-band case, the RTF of our

online VC system was 0.77 with the full-tap filter, 0.58 with the 1/4-tap filter, and 0.53

with the 1/16-tap filter, demonstrating that the online full-band VC system can operate

in real time. Note that the RTF was around 3.0 with the benchmark method, and we

can see that the proposed methods, on which the online full-band VC system is based,

can enhance computational efficiency to achieve real-time operation. In this experimental

evaluation, the proposed system processed each 25 ms frame within 5 ms. If it is necessary

to use a very low-power CPU or change other parameters, the RTF need to be reduced

by using a larger frame shift (e.g., 10 ms) [84].

4.4.4 Evaluation of methods for enhancing proposed online VC system

The effectiveness of the methods presented in Section 4.3 was investigated through sub-

jective evaluations. Tables 4.3 and 4.4 list the evaluation results. In these tables, the

columns labeled “EQ”, “GV” and “Voc” denote whether F0 equalization (Section 4.3.1),

GV compensation (Section 4.3.3), or vocoder-guided training (Section 4.3.2) were applied,

respectively.

F0 equalization in pre-processing

The F0 equalization method described in Section 4.3.1 was first evaluated. Table 4.3 shows

the results of subjective evaluations. In “EQ” column, “src” indicates F0 equalization

that changes the F0 of source speech (Figure 4.3(b)), “tar” denotes F0 equalization that

changes the F0 of target speech (Figure 4.3(c)), and blank is correspond to the method

without F0 equalization. “src” and “tar” were compared with the method without F0

equalization. In the f2f and m2m cases, i.e., intra-gender conversion, the method without

F0 equalization outperformed “tar” in both speaker similarity and speech quality, and

F0 equalization reduced the converted-speech quality. On the other hand, in the case

of f2m and m2f, i.e., cross-gender conversion, we can see that “tar” outperformed the

method without F0 equalization under all conditions. In cross-gender conversion, F0

transformation with PICOLA significantly modifies the spectrum of source speech, and

there are larger differences between the source spectrum and target spectrum than in

intra-gender cases. Therefore, F0 equalization makes it easier to capture the difference of

spectral envelopes for cross-gender VC. However, in intra-gender cases, the degradation

of training data by DTW and WORLD synthesis is more dominant on converted-speech

quality than F0 equalization. Furthermore, the converted-speech quality of “tar” was

higher than that of “src” in all the cross-gender cases. This is seemingly because “tar”

does not modify source speech in the training data, whereas “src” changes the properties

of the source speech used for training and conversion steps. In the following evaluations,

F0 equalization was not applied to the intra-gender conversion and “tar” was applied to

the cross-gender conversion.
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Table 4.3. Preference scores when comparing F0 equalization that changed F0 of source

speech (“src” in column “EQ”) and F0 equalization that changed F0 of target

speech (“tar” in column “EQ”) with method without F0 equalization (blank

in column “EQ”)

(a) Speaker similarity

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m
tar 0.381 vs. 0.619 1.8 × 10−9

tar 0.410 vs. 0.590 1.4 × 10−5 src

f2f
tar 0.433 vs. 0.567 1.1 × 10−3

tar 0.547 vs. 0.453 2.2 × 10−2 src

f2m
tar 0.570 vs. 0.430 5.8 × 10−4

tar 0.606 vs. 0.394 8.7 × 10−8 src

m2f
tar 0.577 vs. 0.423 1.6 × 10−4

tar 0.616 vs. 0.384 3.2 × 10−9 src

(b) Speech quality

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m
tar 0.260 vs. 0.740 < 10−10

tar 0.273 vs. 0.727 < 10−10 src

f2f
tar 0.506 vs. 0.494 7.5 × 10−1

tar 0.594 vs. 0.406 2.7 × 10−6 src

f2m
tar 0.603 vs. 0.397 3.3 × 10−7

tar 0.679 vs. 0.321 < 10−10 src

m2f
tar 0.655 vs. 0.345 < 10−10

tar 0.670 vs. 0.330 < 10−10 src

Vocoder-guided training and GV compensation

The effectiveness of vocoder-guided training described in Section 4.3.2 and GV compensa-

tion described in Section 4.3.3 was investigated. As described at the end of Section 4.4.4,

F0 equalization was used only in the cross-gender cases. Table 4.4 lists the results of

the subjective evaluations of intra- and cross-gender cases with and without vocoder-

guided training and with and without GV compensation. In the intra-gender conversion

cases, vocoder-guided training and GV compensation did not improve speaker similar-

ity except for one case. However, in the cross-gender conversion cases, they improved

speaker similarity under all conditions. For speech quality, we can see that conversion

with vocoder-guided training and GV compensation outperformed that without them.

From the above results, only vocoder-guided training was used in the intra-gender con-

version cases and both methods were applied to the cross-gender conversion cases in the

following evaluations. An objective evaluation of GV compensation was also conducted,
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Table 4.4. Preference scores with vocoder-guided training and GV compensation

(a) Speaker similarity

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m
✓ 0.484 vs. 0.516 4.2 × 10−1

✓ 0.520 vs. 0.480 3.3 × 10−1

f2f
✓ 0.457 vs. 0.543 3.4 × 10−2

✓ 0.587 vs. 0.413 2.0 × 10−5

f2m
tar ✓ 0.577 vs. 0.423 1.1 × 10−4 tar

tar ✓ 0.547 vs. 0.453 2.2 × 10−2 tar

m2f
tar ✓ 0.590 vs. 0.410 9.2 × 10−6 tar

tar ✓ 0.617 vs. 0.383 7.3 × 10−9 tar

(b) Speech quality

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m
✓ 0.572 vs. 0.428 2.6 × 10−4

✓ 0.603 vs. 0.397 3.3 × 10−7

f2f
✓ 0.565 vs. 0.435 1.3 × 10−3

✓ 0.617 vs. 0.383 1.1 × 10−8

f2m
tar ✓ 0.513 vs. 0.487 5.2 × 10−1 tar

tar ✓ 0.593 vs. 0.407 4.2 × 10−6 tar

m2f
tar ✓ 0.652 vs. 0.348 1.2 × 10−14 tar

tar ✓ 0.752 vs. 0.248 < 10−10 tar

as shown in Appendix C. The results suggest that GV values tend to move closer to the

target GV values by using the compensation method for cross-gender conversion.

4.4.5 Comprehensive evaluation of proposed online VC systems

This section presents the comprehensive evaluation of converted-speech quality with the

proposed online VC systems. Each method to be evaluated is defined as follows. “Full-

band+” and “Full-band” are versions of the proposed online full-band VC system with

and without the improvements mentioned in Section 4.4.4, respectively. “Narrow-band+”

is the online narrow-band VC incorporating the methods described in Section 4.3 in the

same manner as “Full-band+”. “Benchmark” is the conventional method implemented in

the form of online conversion and simply extended to full-band VC without the sub-band

modeling method. The evaluation of speaker similarity with each method is discussed in

Section 4.4.5 and the MOS evaluation tests for naturalness is discussed in Section 4.4.5.
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Table 4.5. Preference scores when comparing speaker similarity of three methods: on-

line narrow-band VC system incorporating improvements (“Narrow-band+”),

benchmark method (“Benchmark”), and online full-band VC system incorpo-

rating improvements (“Full-band+”)

Spkr Score p-value

m2m
Full-band+ 0.470 vs. 0.530 1.4 × 10−1 Benchmark

Full-band+ 0.513 vs. 0.487 5.1 × 10−1 Narrow-band+

f2f
Full-band+ 0.752 vs. 0.248 < 10−10 Benchmark

Full-band+ 0.693 vs. 0.306 < 10−10 Narrow-band+

f2m
Full-band+ 0.507 vs. 0.493 7.4 × 10−1 Benchmark

Full-band+ 0.647 vs. 0.353 < 10−10 Narrow-band+

m2f
Full-band+ 0.388 vs. 0.612 5.7 × 10−9 Benchmark

Full-band+ 0.450 vs. 0.550 1.4 × 10−2 Narrow-band+

Table 4.6. Preference scores when comparing proposed real-time full-band VC system

with other DNN-based real-time VC system [1].

(a) Speaker similarity

Spkr Score p-value

m2m Proposed (Full-band+) 0.727 vs. 0.273 < 10−10 Arakawa et al. (2019)

f2f Proposed (Full-band+) 0.907 vs. 0.093 < 10−10 Arakawa et al. (2019)

f2m Proposed (Full-band+) 0.777 vs. 0.223 < 10−10 Arakawa et al. (2019)

m2f Proposed (Full-band+) 0.880 vs. 0.120 < 10−10 Arakawa et al. (2019)

(b) Speech quality

Spkr Score p-value

m2m Proposed (Full-band+) 0.977 vs. 0.023 < 10−10 Arakawa et al. (2019)

f2f Proposed (Full-band+) 0.967 vs. 0.033 < 10−10 Arakawa et al. (2019)

f2m Proposed (Full-band+) 0.960 vs. 0.040 < 10−10 Arakawa et al. (2019)

m2f Proposed (Full-band+) 0.967 vs. 0.033 < 10−10 Arakawa et al. (2019)

Subjective evaluation for speaker similarity

In Section 3.4.3, the sub-band modeling method was compared with the benchmark, and

there were no significant difference between them in terms of speaker similarity in the intra-

gender cases. This section first discusses the effectiveness of the methods evaluated in Sec-

tion 4.4.4 by comparing “Full-band+” with “Benchmark”. Furthermore, the effect of the

frequency-band extension was explored by comparing “Full-band+” and “Narrow-band+”.

Table 4.5 lists the results. In the f2f case, “Full-band+” attained higher speaker similarity

than “Benchmark” by introducing the improvements. Furthermore, “Full-band+” showed

a higher score than “Narrow-band+”, demonstrating the effectiveness of the bandwidth

extension. In the m2m and f2m cases, there were no differences between “Full-band+”
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Fig. 4.4. MOS scores with online narrow-band VC system incorporating several methods

evaluated in Section 4.4.4 (“Narrow-band+”), the benchmark method defined

in Section 3.4.3 (“Benchmark”), online full-band VC system with basic struc-

tures described in Section 4.2 (“Full-band”) and online full-band VC system

incorporating several improvements (“Full-band+”).

and “Benchmark”, and “Full-band+” significantly outperformed “Narrow-band+”. How-

ever, in the m2f case, the scores of “Benchmark” and “Narrow-band+” were higher than

that with “Full-band+”. Future research is needed to investigate the reasons for equal or

better performance in the f2f, m2m and f2m cases and lower performance in the m2f case.

MOS evaluation test for naturalness

To evaluate converted-speech quality, a MOS evaluation test for naturalness of converted-

speech was conducted. Forty listeners participated in each evaluation through a crowd-

sourced evaluation systems [81], and each listener evaluated 20 speech samples. Figure 4.4

shows the results, where the error bar means the 95 % confidence interval. “Narrow-

band+” showed higher naturalness than “Benchmark” despite having a lower sampling

frequency than “Benchmark”. “Full-band” outperformed “Benchmark” and “Narrow-

band+”, demonstrating the effectiveness of the sub-band modeling method for the online

full-band VC system. Furthermore, the average MOS of “Full-band+” was higher than

that of “Full-band” in intra- and cross-gender cases. The proposed full-band online VC

system attained a MOS score of 3.6 of naturalness, whereas it was around 2.8 with the

benchmark method and 3.2 with the proposed online narrow-band VC system.
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4.4.6 Comparison with other DNN-based real-time VC system

The proposed full-band online VC system was compared with another real-time VC system

proposed in Arakawa et al.’s work [1]. Their system uses a DNN-based model for acoustical

modeling and a parametric vocoder [61] for waveform synthesis, as described in Section 2.3.

Data augmentation methods were applied to Arakawa’s VC system, the effectiveness of

which is validated in their work. The same settings were used for the feature analysis,

DNN architecture, and data augmentation as in their study [1]. A series of subjective

evaluations on speaker similarity and speech quality was conducted in the same manner as

the above experiments. Table 4.6 lists the results. As a result, the real-time full-band VC

system achieved significantly higher-quality converted speech than another DNN-based

VC system. In particular, it can output full-band converted speech with higher speaker

similarity than Arakawa et al.’s system, demonstrating the effectiveness for real-world

applications.
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Chapter 5

Conclusion

5.1 Thesis summary

For practical application of real-time VC, it is necessary to achieve high-quality converted

speech. This thesis proposed two methods for a high-quality real-time full-band online

VC system. These methods are used for reducing the computational cost and improving

the converted-speech quality of the DNN-based VC method using spectral differentials.

We also presented the implementation of a real-time full-band online VC system that is

based on the proposed methods.

Chapter 2 reviewed studies on statistical VC, for example, parallel versus non-parallel

VC, parametric versus non-parametric VC, and utterance-level versus frame-level VC.

The typical VC framework based on speech analysis, acoustic modeling, and waveform

synthesis was also described. GMM-based and DNN-based real-time narrow-band VC

methods based on this typical VC framework were also reviewed. After an overview of

spectral-differential VC, the training and conversion processes of a DNN-based spectral-

differential VC method using a minimum-phase filter were described, which is the con-

ventional method discussed in this thesis.

Chapter 3 presented the proposed methods of this thesis. First, the proposed lifter-

training method with filter truncation was described. This method constructs a short-

tap filter without degrading the conversion accuracy by jointly training the parameters

of the DNN-based acoustic model and the lifter coefficient that determine the shape of

the differential filter. The proposed sub-band modeling method for full-band VC was

then presented. This method uses sub-band multi-rate signal processing to divide the

input signal into multiple frequency bands and processes them separately, reducing the

computational cost and simultaneously improving the quality of full-band output speech.

Experimental results indicated that 1) the proposed lifter-training method reduced the

computational cost of filtering to 1/16 without degrading the converted-speech quality and

2) the proposed sub-band modeling method significantly improved the quality of full-band

output speech while enhancing the computational efficiency of the conversion process.

Chapter 4 described the implementation and evaluation of a real-time full-band online
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VC system. A basic system architecture implemented using the proposed methods in

the form of online conversion was first described. This system has the F0 transformation

mechanism in the waveform domain and enables cross-gender conversion in a stream-

ing manner. Several methods for improving converted speech quality without increasing

the computational cost of the conversion process were presented. The evaluation results

indicated that 1) the real-time full-band online VC system achieved equivalent converted-

speech quality to the offline VC method, 2) the system converted full-band speech with

around 2.2 GFLOPS complexity and reduces complexity to about 10 % compared with

the benchmark, and 3) the enhancing techniques can improve the output-speech quality

to a mean opinion score of 3.6 out of 5.0 regarding naturalness.

5.2 Future work

Although we implemented and evaluated the real-time, full-band, online VC system, sev-

eral problems remain to be solved.

5.2.1 Improving accuracy of speech-feature analysis

In this research, DFT-based speech analysis was used for the low-latency feature analysis

as well as the conventional DNN-based real-time VC method [1]. However, DFT-based

feature analysis results in a larger error in the estimation of the spectral envelope than

using vocoder [60, 61]-based one. Although vocoder-guided training was used to make

the output of the DNN-based acoustic model closer to the vocoder-based feature, the

improvement in speaker similarity and speech quality is limited. Therefore, future research

is needed to introduce a feature-analysis method for estimating the spectral envelope more

accurately while maintaining real-time performance.

5.2.2 Evaluating robustness of real-world applications

The real-time online full-band VC system using clean speech datasets was evaluated. It

was found that the system can output high-quality full-band speech. For future work,

it will be necessary to evaluate the robustness of this system in real-world environments

with noise and reverberation. Furthermore, methods for a robust real-time VC system

should be introduced since data-augmentation methods did not work well in evaluation

conducted for this thesis.
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Appendix A

Incremental TTS using pseudo

lookahead with large pretrained

language model

A.1 Introduction

Simultaneous speech-to-speech translation (SST) [85, 86] enables interactive speech com-

munication among different languages and plays an essential part in removing language

barriers. It consists of three modules that perform incremental processing: automatic

speech recognition (ASR), machine translation (MT), and text-to-speech synthesis (TTS).

Recent advances in deep learning have made remarkable progress in the quality of TTS,

as well as in ASR and MT. They have made it possible to artificially generate high-quality

speech comparable to human natural speech by modeling time-series information in the

whole sentence with deep neural networks. In contrast to the typical sentence-level TTS

frameworks, incremental TTS requires handling small linguistic segments at the level

of a few words, which makes it more challenging. Therefore, incremental TTS suffers

from a trade-off between the naturalness of output speech and the latency in synthesis.

Low-latency incremental TTS should process the current segment using only an observed

sentence, rather than waiting for an unobserved future sentence ahead of the current

segment (hereafter, “lookahead”). However, this makes it difficult to output a speech

segment that leads naturally to the lookahead, causing the synthesized-speech quality to

deteriorate.

This chapter proposes a method to perform high-quality and low-latency synthesis using

a pseudo lookahead generated with a large-scale pretrained language model. When we

humans receive an incremental segment one by one, we can predict future information

on the basis of the observed sentence. Then we can read out the segment so that it is

naturally connected to the past observed and predicted contexts. To computationally

imitate this mechanism of human’s incremental reading, the proposed method predicts
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the lookahead using pretrained GPT2 [87], which is trained on datasets from various

domains. It can enhance the quality of synthesized speech without increasing the latency

by using the pseudo lookahead as the future contextual information instead of waiting for

the ground-truth lookahead. Furthermore, a language model-guided fine-tuning method is

also proposed to estimate the contextual embedding that is more suitable for the predicted

sentence with GPT2. The model architecture is a Tacotron2 [88]-based end-to-end TTS

model, which incorporates a contextual embedding network [2] that considers the past

observed and the future unobserved contexts, and consistently trains the entire model to

achieve the high-quality synthesis of the current segment. Evaluation results show that

the proposed method 1) achieves higher speech quality without increasing the latency than

the method using only observed information and 2) reduces the latency while achieving

the equivalent speech quality to waiting for the future context observation. This study

makes the following contributions:

• An incremental TTS method incorporating sentence generation with a language

model is proposed. It is a versatile and effective method that can be applied to

other incremental TTS frameworks (e.g., prefix-to-prefix decoding [89]).

• A language model-guided fine-tuning is proposed to obtain more effective contextual

embedding, which was validated with objective and subjective evaluations.

A.2 Related works

In recent years, the quality of TTS has dramatically improved with the shift from cascade

statistical parametric speech synthesis [90, 91, 92] to end-to-end TTS [93, 88, 94, 95, 96],

which directly generates a mel-spectrogram of output speech from an input character or

phoneme sequence using a single model. Several studies have focused on incremental TTS

with end-to-end architectures [97, 89, 98, 99]. The first method for end-to-end neural

incremental TTS [97] uses a Tacotron [93]-based model to achieve high-quality synthesis.

Even though it is a segment-level incremental TTS just like the proposed method, this

method has difficulty generating natural speech segments because the synthesis process

is isolated from the past observed and unobserved future contexts, as we evaluate in

Section A.4. Ma et al. proposed a prefix-to-prefix framework for incremental TTS with

a lookahead-k strategy that waits to observe future k words and synthesizes a current

segment [89]. Another method also based on the prefix-to-prefix decoding [99] dynamically

controls the number of words in incremental units using reinforcement learning for optimal

latency. Different from these studies, this study focuses on instantly synthesizing speech

from a current segment without waiting for the lookahead. The TTS model used in this

study has a contextual embedding network designed in the prior work for sentence-level

TTS [2]. This method aims at parallel operation of sentence-level TTS by focusing on

intonational phrases, and both pre- and post-phrases of an input phrase can be used for

the inference process, whereas the pre-sentence of the current segment can only be used
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Fig. A.1. Model architecture of proposed incremental TTS method with contextual em-

bedding network to consider past observed sentence and pseudo lookahead.

in incremental TTS discussed in this study.

A.3 Method

This section describes the proposed incremental TTS method. In Section A.3.1, we present

an inference algorithm, which integrates the sentence generation with GPT2. Section A.3.2

describes the model architecture for generating a speech segment considering both past

observed and future unobserved contexts, and Section A.3.3 presents a language model-

guided fine-tuning method for further improvement. Finally, Section A.3.4 provides a

detailed analysis of the pseudo lookahead generation with GPT2.

A.3.1 Incremental synthesis with pseudo lookahead

The synthetic unit for incremental TTS is defined as “the current segment”, which consists

of N words. In the time step t, w1:Nt = w1, · · · ,wn, · · · ,wNt represents “the observed

sentence” and the last N -word sequence wN(t−1)+1:Nt = wN(t−1)+1, · · · ,wNt is a current

segment, where wn denotes the n-th word. Furthermore, w1:N(t−1) = w1, · · · ,wN(t−1) is

defined as “the past observed sentence” to distinguish between the observed sentences with

and without the current segment. GPT2 [87] is an auto-regressive language model, which

assumes the probability distribution of a M -word sequence w1:M can be decomposed into



Appendix A Incremental TTS using pseudo lookahead with large pretrained language model 66

the product of conditional probabilities as:

p(w1:M ) =

M∏
m=1

p (wm|w1:m−1) . (A.1)

In accordance with this modeling, a future L-word sequence ŵNt+1:Nt+L =

ŵNt+1, · · · , ŵNt+L can be obtained by sampling from the probability distribution

p(wNt+1:Nt+L|w1:Nt), where ŵNt+1:Nt+L becomes the “pseudo lookahead” used for

the future contextual information of incremental TTS. Since the TTS model uses a

character or phoneme sequence instead of the word sequence wn, we define the character

or phoneme sequence corresponding to wn as xn. Defining the TTS model as G(·), the

output mel-spectrogram yt can be obtained as:

yt = G
(
xN(t−1)+1:Nt|x1:N(t−1), x̂Nt+1:Nt+L,θG

)
, (A.2)

where θG denotes parameters of G(·). When defining zt as the waveform synthesized from

mel-spectrogram yt, waveform synthesis is performed using WaveGlow [64] vocoder V (·)
as:

zt = V (yt|θV ) , (A.3)

where θV denotes parameters of V (·). The output speech can be incrementally synthesized

by concatenating zt to the audio waveform z1:t−1 that has been output so far.

A.3.2 TTS model architecture

This study’s incremental TTS model is a Tacotron2 [88]-based end-to-end model con-

ditioned on both past observed and unobserved future sentences. It has a module for

contextual embedding [2] as shown in Figure A.1. Character or phoneme sequences of a

current segment xN(t−1)+1:Nt, a past observed sentence x1:N(t−1) and a unobserved future

sentence x̂Nt+1:Nt+L pass through the Tacotron2 encoder, and the encoder outputs with

the past observed and the unobserved future sentences are separately sent to contextual

encoders, which stack six 2-D convolutional layers and a gated recurrent unit (GRU) layer.

Outputs of contextual encoders are concatenated and sent to a token attention layer based

on a global style token [100]. The network that estimates contextual embedding from the

output of the Tacotron2 encoder is defined as the “contextual embedding network”. The

obtained contextual embedding and the current segment xN(t−1)+1:Nt embedded with the

Tacotron2 encoder are concatenated and passed to the Tacotron2 decoder. The contextual

encoders for the past observed and unobserved future sentences share the same parame-

ters, and we used the same values for the hyperparameters of the contextual embedding

network as Cong et al. [2]. By jointly training the contextual embedding network and

the encoder-decoder network of Tacotron2, natural speech segments can be obtained by

considering both the past and future contexts.
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Fig. A.2. Data pipeline based on sliding text window [2] for TTS model training

When training the TTS model, the ground-truth sentence in the training data is used

as the unobserved future sentence. To extract past observed sentences, current segments,

and unobserved future sentences from the training data, the whole sentence is divided

by shifting a fixed-length text window with a hop length in the same manner as the

prior work for parallel TTS [2]. Finally, the ground-truth waveform corresponding to the

current segment is extracted with forced alignment.

A.3.3 Language model-guided fine-tuning

As described in Section A.3.1, the lookahead prediction makes use of linguistic knowl-

edge of a large pretrained language model for incremental TTS. This method, however,

results in a mismatch between the ground-truth lookahead used during training and the

pseudo lookahead during inference. In other words, the TTS model cannot fully utilize the

pseudo lookahead generated with GPT2 since the TTS model does not take the lookahead

prediction into account.

Therefore, this work proposes a language model-guided fine-tuning method to use the

pseudo lookahead for incremental TTS more effectively. In contrast to the training proce-

dure described in Section A.3.2, the sentence generated with GPT2 is used as the looka-

head sentence during the fine-tuning. GPT2 generates the unobserved future sentences

as training data by using the past observed sentences and the current segments extracted

with the sliding text window. Let epseudo be the contextual embedding obtained by using

the pseudo lookahead as an unobserved future sentence, and etruth be the contextual em-

bedding with the ground-truth lookahead. The goal is to enable the context embedding
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Fig. A.3. Data pipeline based on sliding text window [2] for language model-guided fine-

tuning

network to use the pseudo lookahead for the context information to the same extent as

the actual lookahead. Therefore, the additional loss Lsim is added to the loss for the TTS

model training with a weight parameter αsim to maximize the cosine similarity between

epseudo and etruth as:

αsim · Lsim = αsim · (1 − Sim (epseudo, etruth)) , (A.4)

where Sim(·) denotes the cosine similarity. Then, unlike the TTS model training, the

weights of both encoder and decoder networks of Tacotron2 are fixed, and only the con-

textual embedding network is trained. These operations help the TTS model to consider

the contextual information in a way that better fits the prediction of GPT2.

A.3.4 Discussion

First, this section analyze how close the pseudo lookahead generated with GPT2 is to the

ground-truth lookahead. For each time step t, the average cosine similarity between the

contextual embedding obtained with the pseudo lookahead and that with the ground-truth

lookahead is calculated. When the cosine similarity is high, the pseudo lookahead is ex-

pected to produce the equivalent effect on the synthesized speech to the actual observation

of the ground-truth lookahead. Furthermore, the effect of the sampling strategy of GPT2
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Fig. A.4. Average cosine similarity for time step t. This analysis 1) investigates the effect

of k in the top-k sampling, and 2) compares the case with and without the

proposed fine-tuning method for k = 1.

is investigated. GPT2 generates a sentence by randomly sampling from the distribution

of the most probable k words, which is called top-k sampling [101]. When setting a large

value to k, GPT2 performs random sampling from various word candidates. When k is

one, GPT2 uses deterministic generation on the basis of the maximum likelihood.

Figure A.4 shows the analysis results. Note that the same experimental conditions as

those described in Section A.4.1 were used. The label “top k (k = K)” (K = 1, 5, 10, 50)

denotes the case where top-k sampling with k = K is used without the fine-tuning method,

and “top k (k = 1, fine-tuned)” represents the case where top-k sampling with k = 1

is applied with the fine-tuning method. The label “random” denotes the case without

a language model, where we used a random English words as the lookahead sentences.

Comparing the results with “top k (k = K)” and “random”, we can see that the lookahead

generation with all k cases leads to better scores than the “random” case, demonstrating

the effectiveness of the pseudo lookahead with GPT2. Furthermore, we can confirm that

the contextual embedding obtained with the pseudo lookahead tends to become closer

to the ground-truth, as the value of k decreases. Intuitively, a large value of k enables

diverse sentence generation, and a small k produces objectively plausible sentences. The

results suggest that we need to make the value of k small for incremental TTS on a

regular speech corpus. Examining “top k (k = 1, fine-tuned)”, the cosine similarity with

the fine-tuning is better than that without it for t = 1 and 2 and becomes lower than

that in some non-fine-tuning cases as t increases. Since the fine-tuning method takes into

account the pseudo lookahead with GPT2 during training, it can estimate the contextual

embedding more closely to that with the ground-truth lookahead when the input segments
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are not well observed, i.e., at the beginning of the sentence. However, as t increases and

the segments of the original sentence come in, the cosine similarity with the fine-tuning

converges to the same level as that without the fine-tuning.

A.4 Experimental evaluations

A.4.1 Evaluation conditions

LJSpeech [102], a dataset consisting of 13,100 short audio clips of a single female English

speaker lasting approximately 24 hours, was used for the evaluation. 100 and 500 sentences

from the entire dataset were randomly selected for validation and test sets, respectively,

and used the rest as a training set. When extracting a mel-spectrogram from each audio

clip with short-time Fourier transform, 1024-sample frame size, 256-sample hop size, a

Hann window function, and an 80 channel mel-filterbank were used at a sampling fre-

quency 22.05 kHz. To use contextual information in the training process, the sliding text

window described in Section A.3.2 were used with the window length 3 and the hop size

1. The number of words in each input segment N was set to two in the inference process.

When extracting a waveform of each current segment as a preprocessing for training, a

Kaldi-based forced-alignment toolkit [103] was used. The pretrained GPT2*1 and Wave-

Glow*2 models were used for the evaluation. In the inference process, we set the number

of words sampled with GPT2 L to five. When performing the sampling operation with

GPT2, top-k sampling with k = 1 was applied in all cases. The TTS model was trained

with a batch size of 160 distributed across four NVIDIA V100 GPUs for 76000 iterations,

for which the convergence was observed in all the training cases. When performing the

fine-tuning, only the contextual embedding network was trained with a batch size of 32 on

a NVIDIA Geforce GTX 1080Ti GPU for 4000 iterations, where αsim = 10−3 was used.

The Adam [80] optimizer was used with β1 = 0.9, β2 = 0.999, ϵ = 10−6. A learning rates

were set to 10−3 and 10−4 in the TTS model training and the fine-tuning, respectively,

applying L2 regularization with weight 10−6.

A.4.2 Evaluation cases

To investigate the effectiveness of lookahead prediction with GPT2, this work conducted

objective and subjective evaluations by comparing different methods, which include

(1) Ground-truth , ground-truth audio clips included in the test data; (2) Full-

sentence , sentence-level Tacotron2 model [88]; (3) Independent , where the TTS model

synthesized a current speech segment independently of the contextual information [97];

(4) Unicontext , where the TTS model used only the past observed sentence for context

conditioning of the TTS model; (5) Bicontext , which is the proposed method described

*1 https://github.com/graykode/gpt-2-Pytorch
*2 https://github.com/NVIDIA/waveglow
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Fig. A.5. Incremental TTS methods compared in the experimental evaluations

in Section A.3 without the fine-tuning method; (6) Bicontext (truth), where ground-

truth test transcripts were used for unobserved future sentences like the conventional

lookahead-k strategy [89] that waits for observing k words; (7) Bicontext (fine-tuned),

which applied the fine-tuning method to Bicontext. Audio samples*3 synthesized with

these methods are publicly available.

A.4.3 Objective evaluations

Unlike the utterance-level TTS, incremental TTS is more prone to fail in synthesis and

to output non-recognizable speech. Therefore, the word error rate (WER) and charac-

ter error rate (CER) were measured using the state-of-the-art ASR model to evaluate

how natural and easy the output speech is to recognize as a human utterance. A joint-

CTC Transformer-based model [104] trained on librispeech [105], which is included in

ESPnet [106], was used for WER and CER calculation. Table A.1 lists the results.

Firstly, both the CER and WER were vast for Independent. In some cases, the Inde-

pendent did not predict the stop flag correctly due to the lack of context information,

which caused a sluggish part in the output speech and significantly increased the inser-

tion rate. As a result, Bicontext synthesized output speech that was easier to recognize

than that with Independent. Furthermore, the error rates of Bicontext was lower than

that of Unicontext, which used only the observed context, demonstrating the effectiveness

of the pseudo lookahead with GPT2 for incremental TTS. Finally, examining Bicontext

(fine-tuned), we can see that the fine-tuning method decreased the error rates to the level

*3 https://takaaki-saeki.github.io/itts_lm_demo/
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Table A.1. CER, WER and MOS for each method described in Section A.4.2.

Methods CER WER MOS

Groundtruth 5.1 % 17.9 % 4.28 ± 0.13

Fullsentence 5.5 % 18.2 % 3.82 ± 0.12

Bicontext (truth) 8.2 % 24.2 % 3.36 ± 0.16

Independent 38.9 % 96.9 % 2.69 ± 0.20

Unicontext 22.8 % 53.9 % 2.99 ± 0.18

Bicontext 11.9 % 29.8 % 3.38 ± 0.14

Bicontext (fine-tuned) 8.0 % 22.5 % 3.44 ± 0.16

comparable to that of Bicontext (truth), which used the test transcript for the lookahead.

A.4.4 Subjective evaluations

To evaluate the quality of output speech, a mean opinion score (MOS) evaluation test on

naturalness was conducted. Forty listeners participated in the evaluation through Amazon

Mechanical Turk [107], and each listener evaluated 35 speech samples, where five samples

were randomly chosen from the output utterances of test data for each method. Table A.1

shows the average MOS scores with 95 % confidence intervals.

First, the proposed methods scored significantly higher than Independent, which is based

on the prior work [97]. Furthermore, the proposed methods outperformed Unicontext,

which considered only the past observed context, demonstrating that the pseudo lookahead

with GPT2 significantly improves the naturalness of synthesized speech. When comparing

the proposed methods, Bicontext and Bicontext (fine-tuned), the average score of Bicon-

text (fine-tuned) was higher, suggesting that language model-guided fine-tuning leads to

more effective pseudo lookahead generation. Finally, the proposed methods achieved nat-

uralness comparable to Bicontext (truth), which uses the lookahead information like the

method of Ma et al. [89]. This result indicates that the pseudo-lookahead conditioning

with a language model-guided fine-tuning improves the quality equivalently to waiting for

the actual lookahead observations without increasing the latency.

A.5 Conclusion

This study proposed an incremental text-to-speech (TTS) method using the pseudo looka-

head generated with a large pretrained language model. This method synthesized a wave-

form of a current segment while predicting the unobserved future information instead

of waiting for its actual observation. Furthermore, a language model-guided fine-tuning

method was proposed to use the pseudo lookahead with the language model more effec-

tively. Experimental results indicated the effectiveness of the proposed methods in terms
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of both the synthesized-speech quality and the latency. For future work is needed to en-

hance the proposed method for an incremental TTS that does not require the lookahead

observation and has the equivalent quality to sentence-level TTS.
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Appendix B

Detailed description of minimum-phase

reconstruction

This chapter describes the procedure of minimum-phase estimation to construct a filter

from a real cepstrum in detail. SectionB.1 reviews the minimum phase of transfer function

and Section B.2 explains the process to apply the minimum phase to a complex cepstrum.

B.1 Minimum phase properties of transfer function

A transfer function with a minimum phase is causally stable, and its inverse filter is

also causally stable. Minimum phase of a transfer function can be evaluated with the

distribution of zeros. All the zeros of the transfer function with minimum-phase are

inside the unit circle in z-plane, and these zeros are called minimum-phase zeros.

This section first discusses the relationship between minimum phase and the distribution

of zeros in z-plane shown in Figure B.1. An arbitrary transfer function can be expressed

as the product of its non-minimum-phase component and minimum-phase component as:

H = Hnon−min · Hmin, (B.1)

where H, Hnon−min, and Hmin denote the transfer function, the non-minimum-phase com-

ponent, and the minimum-phase component, respectively. We can examine the relation-

ship of equation B.1 in terms of the distribution of poles and zeros of the transfer function.

Figure B.2 shows the distribution of zeros where H is non-minimum phase. All zeros of

Hmin are minimum-phase zeros. Hnon−min has non-minimum phase zeros and poles dis-

tributed inside and outside the unit circle, respectively. The zeros of Hmin and the poles of

Hnon−min are canceled, and the zeros distribution of H is achieved as shown in Figure B.2.

We can also consider the amplitude |H| and the phase θ of the transfer function H. H,

Hnon−min and Hmin have amplitude and phase characteristics, respectively, and can be

written as:

|H|ejθ = |Hnon−min|ejθnon−min · |Hmin|ejθmin , (B.2)
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where |Hnon−min| is generally 1 for all frequency bands. Therefore, the amplitude and

phase characteristics of the transfer function H can be written as:

|H| = |Hmin| (B.3)

θ = ej(θnon−min+θmin). (B.4)

H and Hmin have the same amplitude, but their impulse responses are different because

they have the different phase. However, if H is the minimum phase, then Hnon−min = 1

and therefore they have equal impulse responses.

This thesis defines the procedure of extracting the impulse response of Hmin from the

impulse response of H as “minimum phasing.” The next section presents, as one of the

methods for minimum phasing, the procedure of complex cepstrum processing used to

construct the difference filter.
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function H.

B.2 Minimum phasing of complex cepstrum

The minimum-phase component has 1) the uniqueness of the frequency amplitude and

phase and 2) the property that one can be determined from the other. The former is

based on Bode’s theorem and the latter is also known as the Hilbert transform. The

minimum phase component Hmin has the same amplitude as that of H. In the minimum

phasing with complex cepstrum processing, the phase are obtained from the amplitude of

the transfer function H using the Hilbert transform.

First, the logarithm of the transfer function H is written as:

ln(H) = ln(|H|) + jθ. (B.5)

Then the imaginary part, which has the phase property, is set to zero, and the IDFT is

performed to convert ln(H) to the signal in the quefrency domain. The lifter coefficient

for the Hilbert transform û(n) [67] is multipled to get ĥmin(n) as:

ĥmin(n) = û(n) · ĥ(n), (B.6)

where N is the impulse length. As described in Section 2.4.2, the lifter coefficient can be

written as:

umin(n) =


1 (n = 0, n = N/2)

2 (0 < n < N/2) ,

0 (n > N/2) .

(B.7)

Applying the DFT to ĥmin yields ln |Hmin| for the real part and θmin for the imaginary

part. Therefore, the amplitude and phase of the minimum-phase component Hmin can be

obtained as:

Hmin = eln |Hmin|+jθmin (B.8)
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Figure B.3 shows the whole procedure for obtaining the impulse response hmin of the

minimum phase component Hmin from the impulse response h(n).
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Appendix C

Objective evaluation of statistical

compensation

In this section, we show results of objective evaluations on statistical compensation de-

scribed in Section 4.3.3. We calculated the average GV values of converted cepstrum

features within test utterances for the case with and without the compensation. Fig-

ure C.1 shows the results. As a result, we did not confirm significant improvement in GV

values with the statistical compensation method for all the cases.

The subjective evaluations in Section 4.4.4 showed that the compensation did not im-

prove the speaker similarity for intra-gender conversion. The results in Figure C.1 also

shows that some GV values of converted spectra move away from the target GV values by

using the compensation method. For cross-gender conversion, low-order (e.g., 0–20 th) GV

values of converted cepstrum tend to move closer to that of target cepstrum by using the

compensation method, similar to the results of the subjective evaluation in Section 4.4.4.

To summarize the results of the objective and subjective evaluations, we can infer the

effect of GV compensation in our system is limited. Unlike cepstrum features obtained

from STRAIGHT/WORLD spectrum, which is used in previous works focusing on GV

compensation, DFT-based cepstrum used in this paper more depends on F0. We assume

that this caused the limited compensation effect of GV training.
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Fig. C.1. Average GV values of converted cepstrum within test utterances.
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Appendix D

Pictures of CEATEC 2020

Fig. D.1. Picture of presentation at CEATEC ONLINE 2020.

Fig. D.2. Demonstration of real-time VC system at CEATEC ONLINE 2020. Audience

can hear original speech and speech converted using real-time VC system from

left side and right side of their headphones, respectively. In this demonstration,

audience can experience high-quality output speech and small processing time

of proposed system.


