Incremental Text-to-Speech Synthesis Using Pseudo Lookahead with Large Pretrained Language Model
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d We propose an incremental text-to-speech (TTS) synthesis method that synthesizes speech in small linguistic units for streaming applications.
d Our method uses pseudo lookahead generated with a language model as future context to address the tradeoff between naturalness and waiting time.

Backg rou nd; Incremental TTS for streaming application e.g., simultaneous speech translation) Evaluation

1 Sentence-level TTS: Using full sentence to generate output speech
1 Incremental TTS: Synthesizing speech in small linguistic units
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