We propose an **incremental text-to-speech (TTS) synthesis method** that synthesizes speech in small linguistic units for streaming applications.

Our method uses **pseudo lookahead** generated with a language model as **future context** to **address the tradeoff between naturalness and waiting time**.

Background: Incremental TTS for streaming application (e.g., simultaneous speech translation)
- **Sentence-level TTS**: Using full sentence to generate output speech
- **Incremental TTS**: Synthesizing speech in small linguistic units
- **Incremental TTS suffers from tradeoff between quality and latency**
 Synthesizing each segment independently [1] ⇒ Lower latency but lower quality
 Waiting for k words (lookahead-k policy) [2] ⇒ Higher quality but need waiting time

We propose an incremental TTS method **generated pseudo lookahead as future context**
Leveraging human's incremental reading (reading while predicting framework)
⇒ Achieving higher naturalness without waiting for future input words

Method
1) **Incremental synthesis procedure**
 - Generating pseudo lookahead with **GPT2** [3] from observed segment
 - Current segment, past observed segment, and pseudo lookahead are fed to encoder
 - Encoded past observed segment and pseudo lookahead are fed to contextual encoder
 - Encoded current segment and contextual embedding are combined and fed to decoder

2) **TTS model architecture and training**
 - Tacotron2 [4]-based neural TTS model
 - Training encoder, decoder, and context encoder in an **end-to-end manner**
 - Training model with ground-truth lookahead

Evaluation
1) **Experimental conditions**
 - Corpus
 - Number of words in each input segment: 3 (training), 2 (inference)
 - Number of words in pseudo lookahead: 5

2) Incremental TTS systems
 - Independent [1]
 - Unicontext
 - Bicontext
 - Bicontext (fine-tuned)
 - Bicontext (truth) [2]

 Waiting for future input words

3) Evaluation metrics
 - **Objective evaluation**: Calculated error rates with speech recognition model
 - **Subjective evaluation**: Mean opinion score (MOS) test with 40 native English speakers

4) Results
 - Bicontext > Unicontext: Demonstrating the effectiveness of pseudo lookahead
 - Bicontext (fine-tuned) ≫ Bicontext (truth): Equivalent to waiting for future words

5) Discussion
 - GPT2 prediction is much better than random
 - Random sampling or Maximum likelihood?
 - Maximum likelihood (k = 1) is better
 - How fine-tuning affects contextual embedding?

![Cosine similarity between e_{truth} and e_{pseudo}](chart.png)

Cosine similarity between e_{truth} and e_{pseudo}

Reference
[1] Yanagita+, 2019
[3] Radford et al., 2019
[5] Ito et al., 2017