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PAPER
Real-time full-band voice conversion with sub-band modeling and
data-driven phase estimation of spectral differentials

Takaaki SAEKI†a), Yuki SAITO†b), Shinnosuke TAKAMICHI†c), and Hiroshi SARUWATARI†d),

SUMMARY This paper proposes two high-fidelity and computationally
efficient neural voice conversion (VC) methods based on a direct wave-
form modification using spectral differentials. The conventional spectral-
differential VC method with a minimum-phase filter achieves high-quality
conversion for narrow-band (16 kHz-sampled) VC but requires heavy com-
putational cost in filtering. This is because the minimum phase obtained
using a fixed lifter of the Hilbert transform often results in a long-tap filter.
Furthermore, when we extend the method to full-band (48 kHz-sampled)
VC, the computational cost is heavy due to increased sampling points,
and the converted-speech quality degrades due to large fluctuations in the
high-frequency band. To construct a short-tap filter, we propose a lifter-
trainingmethod for data-driven phase reconstruction that trains a lifter of the
Hilbert transform by taking into account filter truncation. We also propose
a frequency-band-wise modeling method based on sub-band multi-rate sig-
nal processing (sub-band modeling method) for full-band VC. It enhances
the computational efficiency by reducing sampling points of signals con-
verted with filtering and improves converted-speech quality by modeling
only the low-frequency band. We conducted several objective and subjec-
tive evaluations to investigate the effectiveness of the proposed methods
through implementation of the real-time, online, full-band VC system we
developed, which is based on the proposed methods. The results indicate
that 1) the proposed lifter-training method for narrow-band VC can shorten
the tap length to 1/16 without degrading the converted-speech quality, and
2) the proposed sub-band modeling method for full-band VC can improve
the converted-speech quality while reducing the computational cost, and
3) our real-time, online, full-band VC system can convert 48 kHz-sampled
speech in real time attaining the converted speech with a 3.6 out of 5.0 mean
opinion score of naturalness.
key words: voice conversion, spectral differentials, deep neural networks,
data-driven phase, sub-band modeling

1. Introduction

Voice conversion (VC) converts the characteristics of source
speech into those of target speechwhile keeping the linguistic
information unchanged [1]. It has the potential to achieve
speech communication beyond the physical constraints of
the human vocal organs [2].

The most common VC method is statistical VC [3], [4],
which is used to construct an acoustic model that converts
speech features of a source speaker into those of a target
speaker. Deep neural network (DNN)-based VC [5], [6] has
been widely studied, and many models for achieving higher-
converted-speech quality have been proposed. From a prac-
tical point of view, VC must be real-time and online with
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Fig. 1 Overview of conventional method, proposed lifter trainingmethod
and proposed sub-band modeling method. In Section 5, we present imple-
mentation of our real-time, online, full-band VC system based on proposed
methods.

limited computational resources, and real-time VC methods
based on a Gaussian mixture model [7] and DNN [8] have
been studied. They achieve online conversion of narrow-
band (16 kHz-sampled) speech using a single CPU on a lap-
top PC. However, their computational cost is still high, and
we need to reduce this cost towards portable (e.g., VC using
a low-power CPU on a smart phone) or full-band (48 kHz-
sampled) VC that covers the human audible range.

VC consists of three steps: feature analysis, feature con-
version, and waveform synthesis. For the last step, which
is the most computationally exhaustive part, we focus on a
spectral-differential VCmethod [9] that performs conversion
in the waveform-domain by applying a spectral differential
filter to the source speech waveform. This 1) achieves high-
quality conversion by avoiding vocoder errors and 2) incurs
less computational cost than neural vocoders [10]–[12] that
use large DNNs and require sample-by-sample heavy com-
putation. Spectral-differential VC method originally used a
mel-log spectrum approximation (MLSA) filter [13] to filter
a source speech, but Suda et al. found that using a minimum-
phase filter achieved higher converted-speech quality than
using the MLSA filter [14]. Regarding the minimum-phase
filter, an acoustic model (e.g., DNN) outputs a real cepstrum
of the converted speech, and the Hilbert transform using a
lifter with fixed parameters determines the phases of the fil-
ter from the real cepstrum. These processes are suitable for
our aim because their computational costs (i.e., filter design)
are very low. However, since the minimum-phase filter is
not guaranteed to have a short tap length (i.e., the number

Copyright © 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

of samples of the filter), it increases the computational cost
of filtering. Furthermore, there are two problems when we
extend this method from narrow-band VC to full-band VC:
1) converted-speech quality degrades due to large fluctua-
tions in the high-frequency band, and 2) computational cost
is high (mainly in the filtering operation) due to increased
sampling points.

We propose two methods to achieve real-time and high-
fidelity conversion. First, we propose a lifter-trainingmethod
with filter truncation for significantly reducing computa-
tional cost without degrading converted-speech quality. This
method jointly trains not only a DNN-based acoustic model
but also a lifter with trainable parameters. Since parameters
of the DNNs and the lifter are optimized to maximize con-
version accuracy with the consideration of a truncated (i.e.,
short-tap) filter, this method can reduce the computational
cost while preserving conversion accuracy. The main dif-
ference between our method and the conventional spectral-
differential VC method using a minimum-phase filter is with
the lifter to determine the phase of the filter. Whereas the
lifter of the minimum-phase filter is fixed, that of our method
is trained from speech data to determine the phases of a
truncated filter. Our lifter-training method can be viewed
as a framework of DNN-based phase reconstruction from
the amplitude spectrum [15]. Second, for full-band VC, we
also propose a frequency-band-wise modeling method based
on sub-band multi-rate signal processing (hereafter, “sub-
band modeling method”) [16]. Since the characteristics of a
speech waveform vary significantly from band to band, it is
effective to process the waveform separately for each band.
In sub-band WaveNet [17], the speech waveform is divided
into several bands and down-sampled, and the waveform in
each band is processed separately. This method enhances
the computational efficiency by reducing sampling points of
signals converted with filtering and improves the converted-
speech quality bymodeling only the low-frequency band that
contributes to speaker identity and avoiding high-frequency
modeling. Figure 1 shows an overviewof our proposedmeth-
ods. We apply our lifter-training method to narrow-band VC
to significantly reduce computational cost and achieve real-
time VC with a low-power CPU of a single-board computer
(e.g., Raspberry Pi). Furthermore, our sub-band modeling
method for full-band VC achieves real-time conversion with
a single CPU of a mobile device. We also present imple-
mentation of the real-time online VC systems based on our
proposed methods. This system is highly applicable because
it supports F0 transformation and online conversion. Exper-
imental results indicate that 1) the proposed lifter-training
method for narrow-band VC can shorten the tap length to
1/16 without degrading converted-speech quality and 2) the
proposed sub-band modeling method for full-band VC can
improve the converted-speech quality while reducing com-
putational cost, and 3) our online VC system can convert
48 kHz-sampled speech in real time attaining converted
speech with a 3.6 out of 5.0 mean opinion score (MOS)
of naturalness.

In Section 2, we describe the conventional spectral-

differential VC method with a minimum-phase filter. We
describe data-driven phase reconstruction with our lifter-
training method for short-tap filtering in Section 3 and our
sub-band modeling method for full-band VC in Section 4. In
Section 5, we present the implementation of our online full-
band VC system. We explain the objective and subjective
evaluations and the results in Section 6 and conclude this
paper in Section 7. The main contributions of this work are
as follows:

• We propose a liftering-based phase-estimation method
with filter truncation. This method reduces the compu-
tational cost for filtering without lowering conversion
accuracy. This is also presented in our conference pa-
per [18].

• We propose a sub-band modeling method for full-band
VC. It improves full-band converted-speech quality and
provides new insights into high-frequency processing
of a speech signal that can be applied to various tasks.

• We implement the real-time, online, full-band VC sys-
tem based on the proposed methods. We presented an
overview and demonstration of this system in our demo
paper [19]. In this paper, we describe the structure
and evaluation results of our system in detail. Further-
more, we introduce several enhancement techniques for
a higher-quality real-time VC system. These techniques
include our proposed F0 equalization method, which
can be applied to other VC frameworks to improve fea-
ture analysis.

2. Spectral-differential VC with minimum-phase filter

This section describes the training and conversion processes
of the conventional spectral-differential VC method with a
minimum-phase filter (hereafter, “conventional method”).

2.1 Training process

Let L (X) =

[
L (X)1

>
, ..., L (X)C

>
, ..., L (X)

)

>]>
be a complex

frequency spectrum sequence obtained by applying the short-
time Fourier transform (STFT) to an input speech waveform,
where C represents the frame index and ) is the total number
of frames. For simplicity, we focus on frame C. A low-
order real cepstrum I (X)C can be extracted from L (X)C [20].
The DNNs then estimate a real cepstrum of differential filter
Î
(D)
C from I (X)C . The loss function for C is calculated as

!
(MSE)
C =

(
I (Y)C − Î (Y)C

)> (
I (Y)C − Î (Y)C

)
, where Î

(Y)
C is a

real cepstrum of converted speech given as Î (Y)C = I (X)C +
Î
(D)
C , and I (Y)C is a real cepstrum of the target speech. The

DNNs are trained to minimize the loss function for all time
frames represented as follows:

! (MSE) =
1
)

)∑
C=1

!
(MSE)
C . (1)
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2.2 Conversion process

The Î (D)C is estimated with the DNNs. After the high-order
components of the cepstrum are padded with zeros, Î (D)C is
multiplied by a time-independent lifter umin for a minimum-
phase filter. The complex frequency spectrum of differential
filter L̂

(D)
C can be obtained by taking the inverse discrete

Fourier transform (IDFT) of the liftered cepstrum. The lifter
umin is represented as follows [21]:

umin (=) =


1 (= = 0, = = #/2)
2 (0 < = < #/2) ,
0 (= > #/2)

(2)

where # is the number of frequency bins of the DFT. A
differential filter in the time domain f̂

(D)
C is obtained by

applying the IDFT to L̂
(D)
C . The tap length of f̂

(D)
C is equal

to # .

2.3 Trade-off between computational cost and converted-
speech quality

The most computationally expensive step of the conversion
process described in Section 2.2 is that of convolving the dif-
ferential filter into the source speech waveform. To reduce
computational cost, we can introduce a simple method of
truncating the differential filter f̂

(D)
C with a fixed tap length

; (; < #). For example, when the filter length # = 512,
we can reduce the computational cost of filtering by 1/4 by
setting ; = 128 and performing the convolution using only
the first 128 samples of the 512-tap filter. We define the ;-tap
truncated filter as f̂

(;)
C . Since the power of the minimum-

phase filter is concentrated around 0, it is possible to truncate
up to a certain length without losing the converted-speech
quality. When we increase ;, converted-speech quality does
not degrade, but the computational cost of the filtering oper-
ation increases. On the other hand, when we decrease ;, we
can efficiently reduce computational cost, but f̂ (;)C degrades
converted-speech quality.

2.4 Extension to full-band VC

When we apply the conventional method to full-band VC,
there are two problems, i.e., 1) converted-speech quality de-
grades due to large fluctuations in the high-frequency band,
and 2) computational cost is high (mainly in the filtering
operation) due to increased sampling points. Problem 1 is
that the high-frequency components with high variability are
difficult to predict using a statistical model due to the low
correlation between speakers. Problem 2 occurs because the
computational cost of the filtering operation depends on the
signal length and filter length, and both lengths increase as
the sampling frequency increases.

Conventional spectral-defferential VC method
Source speech Target speech

Minimum
phase 

⊗
Filtering

Real-cepstrum
conversion

Results in long-tap filter
= heavy computation

Source speech Target speech

Data-driven
phase 

⊗
Filtering

Real-cepstrum
conversion

Shorten tap length
= light computation

Proposed lifter-training method

Fig. 2 Comparison of proposed lifter-training method and conventional
method

3. Data-driven phase reconstructionwith lifter training

In this section, we present the training and conversion pro-
cesses of our lifter-training method. The main difference
between this method and the conventional one is with the
lifter to determine the phase of the filter, as shown in Fig-
ure 2.

3.1 Training process

Our lifter-training method trains not only DNNs but also a
lifter to avoid converted-speech-quality degradation caused
by filter truncation. Let u = [D1, ..., D2]> be a time-
independent trainable lifter, where 2 is the dimension of
the real cepstrum. The filter-truncation process with ; is
integrated into the training, as shown in Fig. 3.

Aswe described in Section 2.1, theDNNs estimate Î (D)C

from I (X)C . Then Î (D)C is multiplied by the trainable lifter u,
and the complex frequency spectrum of the differential filter
L̂
(D)
C is obtained from the IDFT of Î (D)C and exponential

calculation. The differential filter in the time domain f̂
(D)
C

is obtained by applying the IDFT to L̂
(D)
C . The f̂

(D)
C is

truncated to f̂
(;)
C by applying a window function | given as:

f̂
(;)
C = f̂

(D)
C · |, (3)

| =

[
0th
1 , · · · ,

(;−1)th
1 ,

;th
0 , · · · ,

(#−1)th
0

]>
. (4)

By using the DFT again, a complex spectrum of the ;-tap
truncated differential filter L̂ (;)C can be obtained. A complex
spectrum of converted speech L̂

(Y)
C is obtained by multi-

plying L (X)C by L̂
(;)
C , and the real cepstrum of converted

speech Î
(Y)
C is extracted from L̂

(Y)
C . The parameters of

the DNNs and the lifter are jointly trained to minimize the
same loss function as Eq. (1). Since all processes of this
method are differentiable, the training can be done by back-
propagation [22].
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3.2 Conversion process

In the conversion process, the trained DNNs and lifter es-
timate L̂

(D)
C . The f̂

(D)
C is obtained by applying the IDFT

to L̂
(D)
C , and f̂

(;)
C is obtained by truncating with ;. We can

obtain the converted speech waveform by applying f̂
(;)
C to

the source speech waveform.

3.3 Discussion

With the conventional method, the cepstrum is multiplied by
the lifter coefficient to determine the shape of the filter to
have minimum phase. Although the shape of the differential
filter changes due to truncation, it is transformed to compen-
sate for the effect of the truncation by applying the Hilbert
transform using the lifter trained with the proposed lifter-
training method. As a result, our lifter-training method can
reduce the calculation amount while suppressing converted-
speech quality degradation caused by the filter truncation.
Figure 4 shows the cumulative power distribution of the dif-
ferential filter with the conventional method (; = 512) and
proposed lifter-training method (; = 32). The values on the
vertical axis are normalized with the cumulative total. We
can see that the proposed lifter-training method concentrates
the power in the short taps whereas the conventional method
does not. Figure 5 also shows the difference between the
lifter trained with the proposed method (; = 64) and that
for minimum phasing. The trained lifter is entirely different
from that with the conventional method and has a com-
plicated shape. Figure 6 shows zero plots with truncated
(; = 32) differential filters using the conventional method
and the proposed lifter-training method. Some zeros are dis-
tributed outside the unit circle in the conventional method
because the shape of the filter changes by truncating the es-
timated minimum-phase filter. The proposed lifter-training
method works to correct the distribution of the zeros to the
inside of the unit circle, suggesting that the proposed lifter-
training method compensates for the shape change of the
filter caused by filter truncation and estimate short-tap filter
while avoiding accuracy deterioration. Furthermore, most of
the zeros with the conventional method are located near the
unit circle, while the zeros with the proposed lifter-training
method are relatively far from the circle. This result in-
dicates that the proposed lifter-training method flattens the
amplitude-frequency characteristics of the differential filter.
Note that we used the female-to-female data pairs described
in Section 6.1 and down-sampled them to 16 kHz to get the
results shown in Figure 4 and Figure 5.

As explained in Section 1, liftering-based phase esti-
mation requires only small computation. Since our lifter-
training method adopts the same estimation as the conven-
tional method, there is no increase in computational cost of
phase estimation.

We applied our lifter-training method to VC, i.e.,
speaker conversion. We expect that this method can be
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applied to other tasks processed by filtering, e.g., source
separation and speech enhancement.

4. Frequency-band-wise modeling with sub-band mul-
tirate processing

As described in Section 2.4, when we use the conventional
method for full-band VC, 1) converted-speech quality de-
grades due to large fluctuations in the high-frequency band,
and 2) computational cost is high (mainly in the filtering
operation) due to increased sampling points. We use our
sub-band modeling method to solve these problems. This
method divides the full-band source speech into multiple
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sub-band signals and only converts the lowest-band signal
with the differential filter. Figure 7 shows the workflow of
this method. After the full-band signal is divided into sub-
band signals by sub-band analysis (Section 4.1), they are
converted with the trained model (Section 4.2), and the full-
band converted speech is obtained by sub-band synthesis
(Section 4.3).

The 0–8 kHz signal converted with this method is con-
sistent with the bandwidth handled with the conventional
method for narrow-band VC, and with the bandwidth of
wide-band speaker verification [23]. Therefore, it is rea-
sonable to focus on this bandwidth in converting speaker
identity. Since 8–24 kHz signal contributes to speech qual-
ity, we can enhance the output-speech quality by directly
using the input signal. Unlike other VC methods, such as
seq-to-seqVC [24]–[26], the number of frames of the lowest-
band signal does not change between the input and output
speech. Since the converted-lowest-band signal is frame-
wise synchronized with the higher-band signals, we can di-
rectly synthesize the full-band converted speechwithout time
alignment.

4.1 Sub-band analysis

An original full-band signal G (C) is divided into # sub-band
streams (# = 3 in this paper), and modulated by,−C (=−1/2)

#

and shifted to the base band (Figure 8 (a)):

G= (C) = G (C),−C (=−1/2)#
, (5)

where = = 1, 2, · · · , # is a frequency-band index, and,# =

exp ( 92c/2#). Then G= (C) is bandlimited using low-pass
filter 5 (C) (Figure 8 (b)):

G=,?? (C) = 5 (C) ∗ G= (C) , (6)

where the cutoff frequency of 5 (C) is c/2# , and ∗ represents
the convolution operator. By introducing single-sideband

Full-band source speech (48 kHz)

0-8 kHz 8-16 kHz 16-24 kHz

Sub-band analysis

Short-tap filter Pass through

Sub-band synthesis

Full-band converted speech (48 kHz)

Pass through⊗

Fig. 7 Workflow of our sub-band modeling method for full-band VC.

(SSB) modulation, real-valued signal G=,SSB (C) is obtained
(Figure 8 (c)):

G=,SSB (C) = G=,?? (C), C/2
#
+ G∗=,?? (C),

−C/2
#

, (7)

where ·∗ denotes the complex conjugate. The =-th sub-band
waveform G= (:) is obtained with decimation (Figure 8 (d)):

G= (:) = G=,SSB (:") . (8)

4.2 Training and conversion processes

In the training process, we train the model as described
in Section 2.1 or Section 3.1 using only the lowest-band
signal (= = 1). This training process improves the converted-
speech quality bymodeling only the low-frequency band that
contributes to speaker identity and avoiding high-frequency
modeling. In the conversion process, only the lowest-band
signal is converted, as described in Section 2.2 or Section 3.2,
and higher-band signals are not converted. We can enhance
computational efficiency by using this conversion because it
reduces sampling points of signals converted with filtering.

4.3 Sub-band synthesis

To synthesize a full-band signal, the converted sub-band
signals Ĝ= (C) are up-sampled as follows:

Ĝ=,SSB (C) =
{
Ĝ= (C/") (C = 0, ", 2", · · · )
0 (otherwise) .

(9)

The Ĝ=,SSB (C) is shifted to the base band, and bandlimited
with low-pass filter � (C) (Figure 8 (e)):

Ĝ=,?? (C) = � (C) ∗
(
Ĝ=,SSB (C),−C/2#

)
. (10)

Finally, the full-band signal Ĝ (C) is synthesized (Figure 8 (f)):

Ĝ (C) =
#∑
==1

{
Ĝ=,?? (C), C (=−1/2)

#
+ Ĝ∗=,?? (C),

−C (=−1/2)
#

}
.

(11)
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4.4 Discussion

The number of sub-band streams # is a hyperparameter.
When we increase # , the bandwidth to pass through the
input signal increases. This enhances speech quality but
degrades speaker similarity. On the other hand, when we
decrease # , speech quality and computational efficiency de-
crease because the bandwidth to convert the input signal
increases. As a result of a preliminary experiment, we use
# = 3 as shown in Figure 7, which achieves the best speaker
similarity and speech quality.

In this study, we passed through the mid-band (8–
16 kHz) and high-band (16–24 kHz) signals. The simplest
way to further improve speaker similarity is to convert the
mid-band and high-band signals by using statistical models.
In a preliminary experiment, we evaluated the method of
converting the mid-band and high-band signals by using a
DNN and confirmed that the converted-speech quality de-
graded.

Figure 9 shows the spectrograms of the converted
speech obtained by applying the differential filter to the full-
band source speech (defined as “benchmark” in Section 6),
the converted speech obtained by applying the filter to only
the lowest-band signal, and the full-band target speech. In
these results, we used the female-to-female data pairs de-
scribed in Section 6.1. When we apply the differential filter
to the full-band source speech, the accuracy of estimating the
differential spectrum by using a DNN degrades and we can
observe the over-smoothing of the spectrum in the whole
band (Figure 9 (a)). When we apply the differential filter
only to the lowest band, however, the DNN can estimate
the differential spectrum of the lowest band with high accu-
racy, and we can observe the fine structures of the spectrum.
(Figure 9 (b)).

Our sub-band modeling method can significantly re-
duce the computational cost for full-band VC because it can
decrease both the source-signal length and the filter length.

Furthermore, we can use our lifter-training method with fil-
ter truncation when we convert the lowest-band signal and
can further reduce the computational cost of the filtering
operation.

5. Implementation of real-time, online, full-band VC
system

In Sections 3 and 4, we presented computationally efficient
and high-fidelity full-band VC methods respectively. We
now present the implementation of our online full-band VC
system by combining these methods. Figure 10 shows the
pipeline of our system. It receives a 5-ms waveform of
source speech and outputs a 5-ms waveform of the converted
speech. In this section, we also present several methods for
enhancing the performance of our online VC system without
increasing the computational cost during conversion.

5.1 Basic structure

We describe the basic structure of our online full-band VC
system, which consists of analysis, conversion, and synthesis
steps.

5.1.1 Analysis step

In the analysis step, our system extracts the input feature of
the DNN. First, we apply the Hanning window to the input
frame obtained from full-band source speech and use the
sub-bandmulti-rate signal processing described in Section 4.
To reduce the redundancy of the source cepstrum extracted
from the 0–8 kHz signal, we apply a first-order pre-emphasis
filter � (I) = 1 − UI−1 to the lowest-band signal, with U =

0.97. In our preliminary experiments, we found that this pre-
emphasis processing improved converted-speech quality of
the system. We then extract the low-order cepstrum I (- )

by applying DFT analysis to the frame of the lowest-band
signal.

5.1.2 Conversion step

In the conversion step, our system constructs a time-domain
differential filter from I (- ) , as mentioned in Section 3. The
DNN estimates the real cepstrum of the differential filter
Î
(D) from the real cepstrum of the source speech I (- ) , and

we construct the truncated differential filter f̂
(;) from the

real cepstrum using a minimum-phase filter or data-driven
phase proposed in Section 3.

Since spectral-differential VC method can only convert
vocal tract characteristics, we incorporate F0 transformation
into our system for cross-gender conversion using a direct
waveform modification with PICOLA [27]. This method is
more computationally efficient and suitable for our purpose
than vocoder-based F0 transformation.
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Fig. 9 Spectrograms of (a) converted speech obtained by applying differential filter to full-band source
speech, (b) converted speech obtained by applying differential filter to only lowest-band signal, and (c)
full-band target speech.
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Fig. 10 Pipeline of our real-time, online, full-band VC system.

5.1.3 Synthesis step

In the synthesis step, we obtain the converted speech by
applying the truncated differential filter f̂

(;) to the source
speech waveform. Then we apply the de-emphasis filter
� (I) = 1/

(
1 − UI−1

)
to the converted-lowest-band signal.

We do not convert the higher-band signals and pass through
them. We can obtain the frame of the full-band converted
signal by combining the processed lowest-band signal and
higher-band signals. Finally, we overlap-add the frame to
the previous calculation results and the first 5-ms waveform
is output.

5.2 Methods for enhancing performance of our online VC
system

We present several methods for enhancing naturalness and
speaker similarity of converted speech obtained with our
online VC system. Since all the methods are for training
data refinement or DNN training, they do not increase the
computational cost of our system during conversion.

5.2.1 F0 equalization in pre-processing

In the analysis step of our VC system, we should calcu-
late the spectral envelope component independently of the

excitation components. The well-known method for esti-
mating the spectral envelope is a high-quality vocoder, e.g.,
WORLD [28]. However, it is not practical in real-time VC
due to its high computational cost and large time delays
for analysis. We use a real cepstrum of a DFT spectrum†.
However, a real cepstrum of a DFT spectrum suffers from
the excitation component [29]. This fact affects not only
the analysis step but also the conversion step; the DNN
has to predict the excitation differences between speakers
in addition to spectral-envelope differences. Such prediction
becomes more difficult than the prediction of only spectral-
envelope differences and degrades the prediction accuracy.
Therefore, we use data refinement methods so that the DNN
predicts only spectral-envelope differences.

Figure 11 shows these methods. The essential point is
to remove F0 differences between speakers, i.e., we equalize
one speaker’s F0 to the other speaker’s one. After aligning
the source speaker’s frames and target speaker’s frames us-
ing the dynamic time warping (DTW) algorithm, we obtain
temporally aligned F0, a spectral envelope, and aperiodic-
ity using WORLD (Figure 11(a)). We have two options to
equalize the F0s; equalizing the source speaker’s F0 to the
target speaker’s (Figure 11(b)) or its inverse procedure (Fig-
ure 11(c)). The former replaces F0 of the source speech with
that of the target speech and synthesizes a speech waveform.
The synthesized waveform is used as a new source speech
waveform of the training data. The latter is their inverse,
i.e., a method that exchanges “source” and “target” of the
above sentences. When using a real-time F0 transformation
method (see 2nd paragraph of Section 5.1.2) during conver-
sion, we apply this method to the source speech and carry
out the above F0 equalization.

The above pre-processing of the training data efficiently

†The most simple solution is to use the vocoder during only
training. In this solution, we use a real cepstrum of the WORLD’s
spectral envelope during training and use that of a DFT spectrum
during conversion. However, in our preliminary experiment, we
found that such a method significantly degraded converted-speech
quality.
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Source 
waveform

Target 
waveform

DTWed
WORLD features

F0
SP
AP

F0
SP
AP

SP
AP

F0 F0
SP
AP

WORLD synthesis

F0-equalized training data

WORLD synthesis

(a)
(b) (c)

F0-equalized training data

Fig. 11 Procedure of our F0 equalization methods in pre-processing. (a)
We first obtain DTWed WORLD features. “SP” and “AP” indicate spectral
envelope and aperiodicity, respectively. Then we have two options for
equalizing F0: (b) F0 of source speech is replaced with that of target
speech and (c) its inverse procedure. Re-synthesized waveform becomes
a new source or target speech waveform of training data. When using F0
transformation described in Section 5.1.2, we apply it to source speech in
advance.

removes F0 differences between speakers. Therefore, pre-
diction by using a DNN is expected to become less affected
by F0.

5.2.2 Vocoder-guided training

The F0 equalization method uses a vocoder to alleviate the
effect of F0 differences in the training data. In this section,
we present a method of using a vocoder for DNN training to
enhance the alleviation effect. As a pre-process, we extract
the spectral envelopes of the source speech and target speech
withWORLD because it is more robust against F0 compared
with DFT-based analysis. From the source and target speech
in the training data, we extract not only real cepstra of DFT
spectra, I (- )C and I (. )C , but also those of WORLD spectral
envelopes denoted as c (- )C and c (. )C . In DNN training, we
add the extra term ! (VOC) as

! (MSE) + _! (VOC) = 1
)

)∑
C=1

(
I (Y)C − Î (Y)C

)> (
I (Y)C − Î (Y)C

)
+ _
)

)∑
C=1

(
c (D)C − Î (D)C

)> (
c (D)C − Î (D)C

)
,

(12)

where _ is a weight parameter of vocoder-guided training
and c (D)C = c (. )C − c (- )C . This training method works to
match the predicted spectral differentials of the DFT spectra
and those of the WORLD spectral envelopes. Since c (D)C

is ideally independent on F0, this training helps predict F0-
independent spectral differentials. Note that, we cannot add
a loss function that directly matches c (. )C and Î

(. )
C . This is

because Î (. )C is explicitly calculated by DFT and IDFT.

5.2.3 Statistical compensation training

The well-knownmethod for improving VC quality is to com-
pensate for the statistics of the converted features, e.g., GAN-

based compensation [30]. We now introduce global variance
(GV) compensation [4], which alleviates the over-smoothing
effect of converted spectra. We can write the full objective
by adding the loss term for the GV compensation as

! (MSE) + `! (GV)

=
1
)

)∑
C=1

(
I (Y)C − Î (Y)C

)> (
I (Y)C − Î (Y)C

)
(13)

+ `
)

)∑
C=1


(
I (Y)C − 1

)

)∑
g=1

I (Y)g

)2
−

(
Î
(Y)
C − 1

)

)∑
g=1

Î
(Y)
g

)2 .
6. Evaluations

We first investigated the effectiveness of our proposed meth-
ods: lifter training described in Section 3 and sub-band
modeling described in Section 4. In this evaluation, we im-
plemented the proposed methods and conventional method
in the form of offline conversion and created two intra-
gender VC cases: for female-to-female (f2f) and male-to-
male (m2m) conversion. We also evaluated the computa-
tional efficiency and converted-speech quality of our online
VC systems based on the proposed methods and incorporat-
ing several improvements. Note that we implemented the
online narrow-band VC system in the same manner as Sec-
tion 5. In addition to the intra-gender VC cases, we also
evaluated two cross-gender VC cases: female-to-male (f2m)
and male-to-female (m2f) for this evaluation.

6.1 Evaluation conditions

The source and target speakers in the f2f case were stored
in the JSUT corpus [31] and Voice Actress Corpus [32],
respectively. Those in m2m, f2m and m2f cases were stored
in the JVS corpus [31]. We used 100 utterances (approx.
12 min.) of each speaker, and the numbers of utterances
for training, validation, and test data were 80, 10, and 10,
respectively.

When analyzing the narrow-band (16 kHz) signal, the
window length was 25 ms, frame shift was 5 ms, the fast
Fourier transform (FFT) length was 512 samples, and num-
ber of dimensions of the cepstrum was 40 (0th-through-
39th). When applying the conventional method to full-band
(48 kHz) VC, as described in Section 2.4, the window length
and frame shift were the same as those in the narrow-band
case, but the FFT length was 2048 samples, and number of
dimensions of the cepstrum was 120 (0th-through-119th).
For pre-processing, the silent intervals of training and vali-
dation data were removed, and the lengths of the source and
target speech were aligned using DTW.

The DNN architecture of the acoustic model was multi-
layer perceptron consisting of two hidden layers. We deter-
mined the hyperparameters of the DNN using Optuna [33],
with the numbers of each hidden unit set to 280 and 100
for the narrow-band signal and set to 840 and 300 when ap-
plying the conventional method to full-band VC without our
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sub-band modeling method. The DNNs consisted of a gated
linear unit [34] including the sigmoid activation layer and
tanh activation layer, and batch normalization [35] was car-
ried out before applying each activation function. Adam [36]
was used as the optimization method. During training, the
cepstrum of the source and target speech was normalized
to have zero mean and unit variance. The batch size and
number of epochs were set to 1,000 and 100, respectively.
The model parameters of the DNNs used with the proposed
lifter-training method were initialized with the conventional
method. The initial value of the lifter coefficient was set
to that of the lifter for minimum phasing. For narrow-band
VC and full-band VC with our sub-band modeling method,
the learning rates for the conventional method and proposed
lifter-training method were set to 0.0005 and 0.00001, re-
spectively. When applying the conventional method to full-
band VC without our sub-band modeling method, the learn-
ing rate was set to 0.0001.

We used an Intel (R) Core i7-6850K CPU@ 3.60 GHz
in the evaluation of processing time to show the effectiveness
of our online VC system in a CPU environment. We set the
weight of vocoder-guided training _ and that of GV com-
pensation ` to 10 and 100, respectively. In the preliminary
experiment, we used three methods for data augmentation:
pitch shift, time stretch, and time shift referring to Arakawa’s
study [8]. As a result, the data augmentation did not improve
the converted-speech quality in both intra- and cross-gender
cases, so we did not apply it in the following evaluations.

6.2 Evaluation of lifter-training method

6.2.1 Objective evaluation

We compared root mean squared error (RMSE) of the pro-
posed lifter-training method and conventional method when
changing ;. We set the truncated tap length ; to 128, 64, 48,
and 32. The RMSE was obtained by taking the squared root
of Eq. (1). Figure 12 shows a plot of the RMSEs in m2m and
f2f cases VC using narrow-band speech (16 kHz). The pro-
posed lifter-training method achieved higher-precision con-
version than the conventional method for all ;. The differ-
ences in the RMSEs between the proposed and conventional
methods also tended to become more significant when ; was
smaller. This result indicates that the proposed lifter-training
method can reduce the effect of filter truncation.

6.2.2 Subjective evaluation

To investigate the effectiveness of the proposed lifter-training
method, we conducted a series of preference AB tests on
speech quality and XAB tests on speaker similarity of con-
verted speech. Thirty listeners participated in each of the
evaluations through our crowd-sourced evaluation systems,
and each listener evaluated ten speech samples. We used a
C-test with a significance level U of 0.05. The target speaker’s
natural speech was used as the reference X in the preference
XAB tests. We used the same conditions for all the XAB

20 40 60 80 100 120
truncated tap length l

0.90
0.95
1.00
1.05
1.10
1.15
1.20

RM
SE

Conventional (f2f)
Proposed (f2f)
Conventional (m2m)
Proposed (m2m)

Fig. 12 RMSEs of our lifter-training (“Proposed”) and conventional
methods at each ; in narrow-band (16 kHz) VC.

Table 1 Preference scores with our lifter-training (“Proposed”) and con-
ventional methods in narrow-band case (16 kHz)

(a) Speaker similarity

Spkr Proposed Score p-value Conventional

m2m

; = 32 0.587 vs. 0.413 1.3 × 10−5 ; = 32
; = 32 0.463 vs. 0.537 7.3 × 10−2 ; = 512
; = 48 0.533 vs. 0.467 1.0 × 10−1 ; = 48
; = 48 0.550 vs. 0.450 1.4 × 10−2 ; = 512

f2f

; = 32 0.642 vs. 0.358 < 10−10 ; = 32
; = 32 0.543 vs. 0.457 3.4 × 10−2 ; = 512
; = 48 0.613 vs. 0.387 1.3 × 10−8 ; = 48
; = 48 0.548 vs. 0.452 2.0 × 10−2 ; = 512

(b) Speech quality

Spkr Proposed Score p-value Conventional

m2m

; = 32 0.687 vs. 0.313 < 10−10 ; = 32
; = 32 0.529 vs. 0.471 2.3 × 10−1 ; = 512
; = 48 0.606 vs. 0.394 8.7 × 10−8 ; = 48
; = 48 0.523 vs. 0.477 2.6 × 10−1 ; = 512

f2f

; = 32 0.807 vs. 0.193 < 10−10 ; = 32
; = 32 0.742 vs. 0.258 < 10−10 ; = 512
; = 48 0.581 vs. 0.419 5.5 × 10−5 ; = 48
; = 48 0.513 vs. 0.487 5.1 × 10−1 ; = 512

and AB tests.
In the preliminary experiments, we confirmed that the

converted-speech quality with the conventional method sig-
nificantly deteriorated when we truncate the filter length to
32 and 48. Therefore, we compared several settings of the
conventional method and proposed lifter-training method
with ; = 32 and 48. Table 1 lists the results for narrow-
band (16 kHz) VC. Compared to the truncated conven-
tional method (“Conventional (; = 32, 48)”), we can see
that the proposed lifter-training method significantly outper-
formed the conventional one in terms of speaker similarity
and speech quality. Also, compared to the non-truncated
conventional method (“Conventional (; = 512)”), the pro-
posed lifter-training method (“Proposed (; = 32, 48)”) had
the same or higher quality. These results indicate that the
proposed lifter-training method can reduce the tap length to
1/16 without degrading converted-speech quality whereas
the truncated conventional method significantly degrades
converted-speech quality.



10
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Table 2 Preference scores with a combination of our methods (“Pro-
posed”) and benchmark in full-band (48 kHz) VC

(a) Speaker similarity

Spkr Proposed Score p-value Benchmark

m2m ; = 32 0.537 vs. 0.463 7.3 × 10−2 ; = 2048
; = 48 0.493 vs. 0.507 7.4 × 10−1 ; = 2048

f2f ; = 32 0.516 vs. 0.484 2.5 × 10−1 ; = 2048
; = 48 0.475 vs. 0.525 8.3 × 10−2 ; = 2048

(b) Speech quality

Spkr Proposed Score p-value Benchmark

m2m ; = 32 0.840 vs. 0.160 < 10−10 ; = 2048
; = 48 0.828 vs. 0.172 < 10−10 ; = 2048

f2f ; = 32 0.810 vs. 0.190 < 10−10 ; = 2048
; = 48 0.593 vs. 0.407 4.2 × 10−6 ; = 2048

6.3 Evaluation of sub-band modeling method

We evaluated a combination of our lifter-training and sub-
band modeling methods (hereafter, “sub-band lifter model-
ing method”) in the full-band VC. We defined the conven-
tional method simply extended to full-band VC without our
sub-band modeling method (Section 2.4) as the benchmark,
whichwas also used in the following sections. The tap length
of the differential filter was 2048 in the benchmark. With
our method, we truncated the tap length of the filter to 48 and
32. Table 2 shows the results of XAB tests on speaker sim-
ilarity and AB tests on speech quality. In terms of speaker
similarity, there were no significant differences between our
method and the benchmark. On the other hand, our method
significantly outperformed the benchmark in terms of speech
quality. Therefore, we can confirm that our method can im-
prove converted-speech quality while significantly reducing
computational cost.

6.4 Comparison of online and offline VC

To evaluate online conversion, we compared the converted-
speech quality of our online VC system described in Sec-
tion 5.1 with that of offline VC described in Section 4. As
a subjective evaluation, we conducted AB tests on speech
quality and XAB tests on speaker similarity. We did not
apply pre-emphasis and enhancing techniques described in
Section 5.2 to the online conversion to compare under fair
conditions. Furthermore, we did not truncate the filter in
both online and offline conversions because the effect of filter
truncation is expected to be the same with both VCmethods.
Table 3 shows that there is no significant difference between
online and offline conversions in terms of both speaker sim-
ilarity and speech quality. Therefore, we can confirm that
online conversion shows the same converted-speech quality
as offline conversion.

Table 3 Preference scores with our online VC system described in Sec-
tion 5.1 and offline VC described in Section 4.

(a) Speaker similarity

Spkr Score p-value
m2m online 0.493 vs. 0.506 7.4 × 10−1 offline
f2f online 0.486 vs. 0.513 5.1 × 10−1 offline

(b) Speech quality

Spkr Score p-value
m2m online 0.517 vs. 0.483 4.2 × 10−1 offline
f2f online 0.490 vs. 0.510 6.2 × 10−1 offline

6.5 Computational complexity and processing time of our
online VC system

6.5.1 Computational complexity

In this section, we estimated the complexity of our online
VC systems as an evaluation of computational efficiency.
Our online full-band VC system consists of sub-band pro-
cessing (“Sub-band”), cepstrum analysis (“Cepstrum”), in-
ference with the DNN (“Inference”), the Hilbert transform
(“Hilbert trans.”), and filtering (“Filtering”). The complex-
ity of each process can be calculated from the parameters
in Section 6.1. We converted the complexity to floating
point operations per second, i.e., FLOPS and considered
0.300 GFLOPS complexity for other neglected calculations
(“Other”), e.g., pre-emphasis and F0 transformation. In the
same manner, we calculated the complexity of our online
narrow-band VC system considering 0.100 GFLOPS for ne-
glected operations.

Table 4(a) lists the results when the filter was full-tap
(512 taps), truncated to 1/4 tap length and truncated to 1/16
tap length in the narrow-band and full-band cases. In the
narrow-band case, the total complexity was 0.86 GFLOPS
with the 1/4-tap filter and 0.60 GFLOPS with the 1/16-tap
filter, whereas the complexity with the full-tap filter was
1.91 GFLOPS. These results indicate that we can signifi-
cantly reduce complexity by using our lifter-training method
with filter truncation and our online narrow-band VC sys-
tem achieves real-time conversion with a CPU of a single
board computer (e.g., Raspberry Pi). In the full-band case,
our online VC system attained 2.50 GFLOPS with 1/4-tap
filter and can convert full-band speech with lower computa-
tional cost thanLPCNet [37] for narrow-band (16 kHz)wave-
form synthesis. Note that the total complexity was around
20 GFLOPS with the benchmark, and the key difference is
the filtering operation, which requires around 16.8 GFLOPS
with benchmark and can be reduced to around 0.1 GFLOPS
with the proposed system. Therefore, we can confirm that fil-
ter truncation and sub-band processing can efficiently reduce
computational cost. The complexity of sub-band processing
is more dominant than complexity reduction with our lifter-
trainingmethod, but we can further reduce the computational
cost of the whole system by incorporating our lifter-training
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Table 4 Estimated complexity and measured RTF of our online VC system in narrow-band (16 kHz)
and full-band (48 kH) cases.

(a) Complexity (GFLOPS)

Frequency Tap length Sub-band Cepstrum Inference Hilbert trans. Filtering Other Total

Narrow-band
Full-tap

- 0.043 0.330 0.041
1.399

0.100
1.91

1/4-tap 0.350 0.86
1/16-tap 0.088 0.60

Full-band
Full-tap

1.430 0.043 0.330 0.041
1.399

0.300
3.54

1/4-tap 0.350 2.50
1/16-tap 0.088 2.23

(b) RTF

Frequency Tap length Sub-band Cepstrum Inference Hilbert trans. Filtering Other Total

Narrow-band
Full-tap

- 0.005 0.133 0.008
0.190

0.012
0.35

1/4-tap 0.052 0.21
1/16-tap 0.015 0.17

Full-band
Full-tap

0.308 0.005 0.133 0.008
0.264

0.052
0.77

1/4-tap 0.070 0.58
1/16-tap 0.020 0.53

method.

6.5.2 Processing time

To evaluate the computational performance of our online
VC systems, we measured the processing time with a single
CPU then calculated the real-time factor (RTF) by dividing
the average processing time of frames within an utterance
by the length of the input waveform (i.e., 5 ms). Table 4(b)
lists the results. In the full-band case, the RTF of our online
VC system was 0.77 with the full-tap filter, 0.58 with the
1/4-tap filter, and 0.53 with the 1/16-tap filter, demonstrat-
ing that our online full-band VC system can operate in real
time. Note that the RTF was around 3.0 with the benchmark
method, andwe can see that our proposedmethods, onwhich
our online full-band VC system is based, can enhance com-
putational efficiency to achieve real-time operation. In this
experimental evaluation, our system processed each 25 ms
frame within 5 ms. If we need to use a very low-power
CPU or change other parameters, it would be necessary to
further reduce the RTF by using a larger frame shift (e.g.,
10 ms) [38].

6.6 Evaluation of methods for enhancing our online VC
system

We investigated the effectiveness of the methods presented
in Section 5.2 through subjective evaluations. Tables 5 and 6
list the evaluation results. In these tables, the columns la-
beled “EQ”, “GV” and “Voc” denote whether we applied
F0 equalization (Section 5.2.1), GV compensation (Sec-
tion 5.2.3), or vocoder-guided training (Section 5.2.2), re-
spectively.

6.6.1 F0 equalization in pre-processing

We first evaluated the F0 equalization method described in

Table 5 Preference scores when comparing F0 equalization that changed
F0 of source speech (“src” in column “EQ”) and F0 equalization that
changed F0 of target speech (“tar” in column “EQ”) with method with-
out F0 equalization (blank in column “EQ”)

(a) Speaker similarity

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m tar 0.381 vs. 0.619 1.8 × 10−9
tar 0.410 vs. 0.590 1.4 × 10−5 src

f2f tar 0.433 vs. 0.567 1.1 × 10−3
tar 0.547 vs. 0.453 2.2 × 10−2 src

f2m tar 0.570 vs. 0.430 5.8 × 10−4
tar 0.606 vs. 0.394 8.7 × 10−8 src

m2f tar 0.577 vs. 0.423 1.6 × 10−4
tar 0.616 vs. 0.384 3.2 × 10−9 src

(b) Speech quality

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m tar 0.260 vs. 0.740 < 10−10
tar 0.273 vs. 0.727 < 10−10 src

f2f tar 0.506 vs. 0.494 7.5 × 10−1
tar 0.594 vs. 0.406 2.7 × 10−6 src

f2m tar 0.603 vs. 0.397 3.3 × 10−7
tar 0.679 vs. 0.321 < 10−10 src

m2f tar 0.655 vs. 0.345 < 10−10
tar 0.670 vs. 0.330 < 10−10 src

Section 5.2.1. Table 5 shows the results of subjective eval-
uations. In “EQ” column, “src” indicates F0 equalization
that changes the F0 of source speech (Fig. 11(b)), “tar” de-
notes F0 equalization that changes the F0 of target speech
(Fig. 11(c)), and blank is correspond to the method with-
out F0 equalization. We compared “src” and “tar” with the
method without F0 equalization. In the f2f and m2m cases,
i.e., intra-gender conversion, the method without F0 equal-
ization outperformed “tar” in both speaker similarity and
speech quality, and F0 equalization reduced the converted-
speech quality. On the other hand, in the case of f2mandm2f,
i.e., cross-gender conversion, we can see that “tar” outper-
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formed the method without F0 equalization under all condi-
tions. In cross-gender conversion, F0 transformationwith PI-
COLA significantly modifies the spectrum of source speech,
and there are larger differences between the source spectrum
and target spectrum than in intra-gender cases. Therefore,
F0 equalization makes it easier to capture the difference of
spectral envelopes for cross-gender VC. However, in intra-
gender cases, the degradation of training data by DTW and
WORLD synthesis is more dominant on converted-speech
quality than F0 equalization. Furthermore, the converted-
speech quality of “tar” was higher than that of “src” in all
the cross-gender cases. This is seemingly because “tar” does
not modify source speech in the training data, whereas “src”
changes the properties of the source speech used for training
and conversion steps. In the following evaluations, we did
not apply F0 equalization to the intra-gender conversion and
applied “tar” to the cross-gender conversion.

6.6.2 Vocoder-guided training and GV compensation

We investigated the effectiveness of vocoder-guided training
described in Section 5.2.2 and GV compensation described
in Section 5.2.3. As described at the end of Section 6.6.1, we
used F0 equalization only in the cross-gender cases. Table 6
lists the results of the subjective evaluations of intra- and
cross-gender cases with and without vocoder-guided train-
ing and with and without GV compensation. In the intra-
gender conversion cases, vocoder-guided training and GV
compensation did not improve speaker similarity except for
one case. However, in the cross-gender conversion cases,
they improved speaker similarity under all conditions. For
speech quality, we can see that conversion with vocoder-
guided training and GV compensation outperformed that
without them. We also conducted an objective evaluation
of GV compensation, as shown in Appendix A. The results
suggest that GV values tend to move closer to the target GV
values by using the compensation method for cross-gender
conversion. From the above results, we used only vocoder-
guided training in the intra-gender conversion cases and ap-
plied both methods to the cross-gender conversion cases in
the following evaluations.

6.7 Comprehensive evaluation of our online VC systems

In this section, we comprehensively evaluated the converted-
speech quality with our online VC systems. We first define
each method to be evaluated. “Full-band+” and “Full-band”
are versions of our online full-bandVC systemwith andwith-
out the improvements mentioned in Section 6.6, respectively.
“Narrow-band+” is our online narrow-band VC incorporat-
ing the methods described in Section 5.2 in the same manner
as “Full-band+”. “Benchmark” is the conventional method
implemented in the form of online conversion and simply
extended to full-band VC without our sub-band modeling
method. We discuss the evaluation of speaker similarity
with each method in Section 6.7.1 and the MOS evalua-
tion tests for naturalness in Section 6.7.2. Audio samples

Table 6 Preference scores with vocoder-guided training and GV com-
pensation

(a) Speaker similarity

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m X 0.484 vs. 0.516 4.2 × 10−1
X 0.520 vs. 0.480 3.3 × 10−1

f2f X 0.457 vs. 0.543 3.4 × 10−2
X 0.587 vs. 0.413 2.0 × 10−5

f2m tar X 0.577 vs. 0.423 1.1 × 10−4 tar
tar X 0.547 vs. 0.453 2.2 × 10−2 tar

m2f tar X 0.590 vs. 0.410 9.2 × 10−6 tar
tar X 0.617 vs. 0.383 7.3 × 10−9 tar

(b) Speech quality

Spkr EQ GV Voc Score p-value EQ GV Voc

m2m X 0.572 vs. 0.428 2.6 × 10−4
X 0.603 vs. 0.397 3.3 × 10−7

f2f X 0.565 vs. 0.435 1.3 × 10−3
X 0.617 vs. 0.383 1.1 × 10−8

f2m tar X 0.513 vs. 0.487 5.2 × 10−1 tar
tar X 0.593 vs. 0.407 4.2 × 10−6 tar

m2f tar X 0.652 vs. 0.348 1.2 × 10−14 tar
tar X 0.752 vs. 0.248 < 10−10 tar

Table 7 Preference scores when comparing speaker similarity of three
methods: our online narrow-band VC system incorporating improvements
(“Narrow-band+”), benchmark method (“Benchmark”), and our online full-
band VC system incorporating improvements (“Full-band+”)

Spkr Score p-value

m2m Full-band+ 0.470 vs. 0.530 1.4 × 10−1 Benchmark
Full-band+ 0.513 vs. 0.487 5.1 × 10−1 Narrow-band+

f2f Full-band+ 0.752 vs. 0.248 < 10−10 Benchmark
Full-band+ 0.693 vs. 0.306 < 10−10 Narrow-band+

f2m Full-band+ 0.507 vs. 0.493 7.4 × 10−1 Benchmark
Full-band+ 0.647 vs. 0.353 < 10−10 Narrow-band+

m2f Full-band+ 0.388 vs. 0.612 5.7 × 10−9 Benchmark
Full-band+ 0.450 vs. 0.550 1.4 × 10−2 Narrow-band+

generated with these methods are publicly available for f2f
conversion†.

6.7.1 Subjective evaluation for speaker similarity

In Section 6.3, we compared our sub-band modeling method
with the benchmark, and there were no significant difference
between them in terms of speaker similarity in the intra-
gender cases. In this section, we first discuss investigating
the effectiveness of the methods evaluated in Section 6.6
by comparing “Full-band+” with “Benchmark”. Further-
more, we explored the effect of the frequency-band exten-
sion by comparing “Full-band+” and “Narrow-band+”. Ta-
ble 7 lists the results. In the f2f case, “Full-band+” attained
higher speaker similarity than “Benchmark” by introducing
the improvements. Furthermore, “Full-band+” showed a
higher score than “Narrow-band+”, demonstrating the effec-
tiveness of the bandwidth extension. In the m2m and f2m
cases, there were no differences between “Full-band+” and
†https://takaaki-saeki.github.io/rtvc_filter_demo/

https://takaaki-saeki.github.io/rtvc_filter_demo/
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Fig. 13 MOS scores with our online narrow-band VC system incorporat-
ing several methods evaluated in Section 6.6 (“Narrow-band+”), the bench-
mark method defined in Section 6.3 (“Benchmark”), our online full-band
VC system with basic structures described in Section 5.1 (“Full-band”)
and our online full-band VC system incorporating several improvements
(“Full-band+”).

“Benchmark”, and “Full-band+” significantly outperformed
“Narrow-band+”. However, in the m2f case, the scores of
“Benchmark” and “Narrow-band+” were higher than that
with “Full-band+”. Future research is needed to investigate
the reasons for equal or better performance in the f2f, m2m
and f2m cases and lower performance in the m2f case.

6.7.2 MOS evaluation test for naturalness

To evaluate converted-speech quality, we conducted a MOS
evaluation test for naturalness of converted-speech. Forty
listeners participated in each evaluation through our crowd-
sourced evaluation systems, and each listener evaluated 20
speech samples. Figure 13 shows the results, where the error
bar means the 95 % confidence interval. “Narrow-band+”
showed higher naturalness than “Benchmark” despite having
a lower sampling frequency than “Benchmark”. “Full-band”
outperformed “Benchmark” and “Narrow-band+”, demon-
strating the effectiveness of our sub-band modeling method
for the online full-bandVC system. Furthermore, the average
MOS of “Full-band+” was higher than that of “Full-band”
in intra- and cross-gender cases. Our online full-band VC
system attained a MOS score of 3.6 of naturalness, whereas
it was around 2.8 with the benchmark method and 3.2 with
our online narrow-band VC system.

7. Conclusion

We proposed two high-fidelity and computationally efficient
neural voice conversion (VC) methods based on a direct
waveform modification using spectral differentials. First,
we proposed a lifter-training method with filter truncation
for short-tap filtering. It performed data-driven phase re-
construction by training a lifter for the Hilbert transform
considering filter truncation. We then proposed a sub-band
modeling for real-time full-band VC. It enhanced computa-
tional efficiency by reducing sampling points of signals con-

verted with filtering and improved converted-speech quality
by modeling only the low-frequency band that contributes
to speaker identity and avoiding high-frequency modeling.
Furthermore, we presented the implementation methods of
our real-time, online, full-band VC system using only a sin-
gle CPU for practical applications. Experimental results
indicated that our proposed methods significantly improve
converted-speech quality and computational efficiency in
both narrow-band and full-band cases, and our VC system
based on our proposed methods can synthesize full-band
converted speech in real time using a low-power CPU and
can attain a mean opinion score of 3.6 / 5.0 regarding natu-
ralness.

Even though our current system achieves high speech
quality and real-time operation, the speaker similarity is lim-
ited due to the simple DFT-based feature analysis. When
our current system is applied to a real-world situation, it can
perform a rough speaker conversion (e.g., speaker effects)
with high speech quality. In future work, we will mainly
work on improving the feature analysis part to enhance the
speaker similarity. Furthermore, we focused on a real-time
VC system that can be applied to relatively limited use cases
(e.g., parallel data and one-to-one speaker mapping) in this
work. Our additional task would be extending our system to
other VC frameworks, including non-parallel training [39],
[40] and multi-speaker conversion with speaker adaptation
techniques [41].
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Appendix A: Objective evaluation of statistical com-
pensation

In this section, we show results of objective evaluations on
statistical compensation described in Section 5.2.3. We cal-
culated the averageGVvalues of converted cepstrum features
within test utterances for the case with and without the com-
pensation. Figure A· 1 shows the results. As a result, we did
not confirm significant improvement in GV values with the
statistical compensation method for all the cases.

The subjective evaluations in Section 6.6.2 showed
that the compensation did not improve the speaker simi-
larity for intra-gender conversion. The results in Figure A· 1
also shows that some GV values of converted spectra move
away from the target GV values by using the compensa-
tion method. For cross-gender conversion, low-order (e.g.,
0–20 th) GV values of converted cepstrum tend to move
closer to that of target cepstrum by using the compensation
method, similar to the results of the subjective evaluation in
Section 6.6.2.

To summarize the results of the objective and subjec-

http://voice-statistics.github.io/
http://voice-statistics.github.io/
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Fig. A· 1 Average GV values of converted cepstrum within test utter-
ances.

tive evaluations, we can infer the effect of GV compensation
in our system is limited. Unlike cepstrum features obtained
from STRAIGHT/WORLD spectrum, which is used in pre-
vious works focusing on GV compensation, DFT-based cep-
strum used in this paper more depends on F0. We assume
that this caused the limited compensation effect of GV train-
ing.
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