

SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling

Takaaki Saeki, Shinnosuke Takamichi, Tomohiko Nakamura, Naoko Tanji, and Hiroshi Saruwatari

The University of Tokyo, Japan

Outline

Background

Related Work

- Methods
- Experimental Evaluation
- **G** Summary

Background: Speech Restoration

Need to use and analyze existing degraded speech data. E.g.) Historical audio materials, telephone recordings, etc.

Containing low-resource languages, endangered cultures, etc.

3/38

https://parade.com/.image/c_limit%2Ccs_srgb%2Cq_auto:good%2Cw_700/MTkwNTc5NTlyNDMyNTQyNTg4/1-19-martin-lutherking-ftr.webp https://i.insider.com/5d2faa4d7e76cc3f20437ff6?width=700 https://www.fluentu.com/blog/iapanese/wp-content/uploads/sites/6/2021/09/classic-iapanese-movies-5.ipg

Background: Speech Restoration

4/38

Speech restoration: generating clean speech from degraded speech.

Low-quality old recordings

High-quality restored audio

Speech restoration: generating clean speech from degraded speech.

Speech restoration of real data is highly challenging. Paired training data are not available. Cannot use information on acoustics distortions (e.g., audio devices).

Low-quality old recordings

High-quality restored audio

Our Approach: Self-Supervised Speech Restoration 6/38

Learning speech restoration model **without paired data**. **Simulating the generation process** of recorded audio.

Minimizing reconstruction loss

Our Approach: Self-Supervised Speech Restoration 7/38

Learning speech restoration model **without paired data**. **Simulating the generation process** of recorded audio.

Our Approach: Self-Supervised Speech Restoration 8/38

Learning speech restoration model **without paired data**. Consisting of **analysis**, **synthesis**, and **channel** modules.

Minimizing reconstruction loss

Outline

Background

□ Related Work

- Methods
- Experimental Evaluation
- **J** Summary

Supervised learning for speech restoration [Liu+, 2021] Training **analysis** and **synthesis** modules separately. Creating artificial **paired** training data.

Our approach uses **real data** based on self-supervised learning.

H. Liu et al., "Voicefixer: Toward general speech restoration with neural vocoder," arXiv, vol. abs/2109.13731, 2021

Related Work

Differential digital signal processing (DDSP) autoencoder [Engel+, 2021] Learning disentangled audio features in a **self-supervised** manner

Our work focuses on restoration of degraded speech.

Outline

Background Related Work

Methods

Experimental EvaluationSummary

Basic Framework of Proposed Method 13/38

Analysis, Synthesis, Channel modules are all composed of neural networks.

Analysis and Channel modules: 2D and 1D U-Net models

Synthesis module: HiFi-GAN [Kong+, 2020]

Basic Framework of Proposed Method 14/38

Analysis module estimates speech features and channel features.

Basic Framework of Proposed Method 15/38

Synthesis module synthesizes restored speech from speech features.

Channel module adds **channel** features to restored speech.

Basic Framework of Proposed Method 17/38

Analysis module estimates speech features and channel features.

Synthesis module synthesizes restored speech from speech features.

Channel module adds **channel** features to restored speech.

Basic Framework of Proposed Method 18/38

MelSpec: Using <u>mel spectrogram</u> to train synthesis module

SourceFilter: Using <u>mel cepstrum + F0</u> to train synthesis module

Only pretraining synthesis module and freezing it.

Basic Framework of Proposed Method 19/38

20/38

Proposed method **works as Audio effector** to extract and add channel features.

Proposed method works as Audio effector to extract and add channel features.

τ_{backward}
Learning
analysis module
to output clean
speech features

Backward training with arbitrary high-quality speech

τ_{backward} Learning analysis module to output clean speech features

τ_{backward} Learning analysis module to output clean speech features

27/38

We cannot get so much data from a single historical audio material.

Hard to learn modules with low-resource data (< 1 hour).

> Introducing supervised pretraining to tackle data scarcity.

Supervised pretraining for Low-Resource Setting 28/38

Supervised pretraining with pseudo low-quality speech data

Supervised pretraining for Low-Resource Setting 29/38

Supervised pretraining with pseudo low-quality speech data

Outline

Background
 Related Work
 Methods

Experimental EvaluationSummary

Compared our method and previous supervised method [Liu+, 2021].

- 1) **Simulated datasets** based on high-quality speech corpus [Takamichi+, 2021] Applied four types of distortions to **6-hour** single-speaker data
 - a) Band-limited
 - b) Clipped
 - c) Quantized & Resampled
 - d) Overdrive

Compared our method and previous supervised method [Liu+, 2021].

- 1) **Simulated datasets** based on high-quality speech corpus [Takamichi+, 2021] Applied four types of distortions to **6-hour** single-speaker data
 - a) Band-limited
 - b) Clipped
 - c) Quantized & Resampled
 - d) Overdrive

2) **Real historical audio material** recorded on an analog tape recorder Around **20 minutes**' multi-speaker data recorded in 1960s – 1970s

Evaluation Results with Simulated Data 33/38

Mean opinion score (MOS) test of speech quality with 40 listeners in each case

	(a) Band-limited		(b) Clipped		(c) Quantized & Resampled		(d) Overdrive	
	MOS	Sample	MOS	Sample	MOS	Sample	MOS	Sample
Ground-truth	4.51		4.58	()	4.67	\ >))	4.65)
Input	2.38		2.45	((v))	1.73	()	1.54	((«))
Supervised [Liu+, 2021]	3.74		3.01		2.80	())	2.00	
Proposed (MelSpec)	4.20		3.49	((x))	3.27	((*))	2.68	
Proposed (SourceFilter)	3.46		2.49		2.66	((*))	2.58	

Proposed method achieved significantly higher MOS than previous supervised method.

Evaluation Results with Real Data

Evaluated proposed method with **real historical audio** (around 20 min).

	MOS	Sample
Input	2.98	
Supervised [Liu+, 2021]	2.80	
Proposed (MelSpec)	2.96	(((
Proposed + pretraining (MelSpec)	3.06	

Evaluation Results with Real Data

Evaluated proposed method with **real historical audio** (around 20 min).

Statistical significance		MOS	Sample		
(p-value < 0.05) in side-by-side test	Input	2.98			
	Supervised [Liu+, 2021]	2.80			
Effectiveness	Proposed (MelSpec)	2.96		Still needs	
for real data	Proposed + pretraining (MelSpec)	3.06		for real data	

Evaluation Results of Audio Effect Transfer 36/38

Similarity MOS (SMOS) test for **similarity of audio characteristics**.

- **Source**: Original high-quality audio samples
- Mean spec. diff: Applying differential spectrum to original audio samples
- **Proposed**: Performing audio effect transfer with our method

Evaluation Results of Audio Effect Transfer 37/38

Similarity MOS (SMOS) test for **similarity of audio characteristics**.

- **Source**: Original high-quality audio samples
- Mean spec. diff: Applying differential spectrum to original audio samples
- **Proposed**: Performing audio effect transfer with our method

	Simulated (Quantized & Resampled)	Real
Target	3.98	2.99
Source	1.16	1.30
Mean spec. diff	1.68	_
Proposed	3.44	2.12

Self-supervised speech restoration without paired data

Confirmed effectiveness with **real data** but need more data.

Code

More audio samples

