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Background: Speech Restoration
Need to use and analyze existing degraded speech data.

E.g.) Historical audio materials, telephone recordings, etc.

Containing low-resource languages, endangered cultures, etc.
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Background: Speech Restoration
Speech restoration: generating clean speech from degraded speech.
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Background: Speech Restoration
Speech restoration: generating clean speech from degraded speech.

Speech restoration of real data is highly challenging.
Paired training data are not available.
Cannot use information on acoustics distortions (e.g., audio devices).
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Our Approach: Self-Supervised Speech Restoration

Learning speech restoration model without paired data.
Simulating the generation process of recorded audio.
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Our Approach: Self-Supervised Speech Restoration

Learning speech restoration model without paired data.
Consisting of analysis, synthesis, and channel modules.
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Related Work

Supervised learning for speech restoration [Liu+, 2021]

Training analysis and synthesis modules separately.
Creating artificial paired training data.

Our approach uses real data based on self-supervised learning.

H. Liu et al., "Voicefixer: Toward general speech restoration with neural vocoder," arXiv, vol. abs/2109.13731, 2021
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Related Work
Differential digital signal processing (DDSP) autoencoder [Engel+, 2021]

Learning disentangled audio features in a self-supervised manner

Our work focuses on restoration of degraded speech.

J. Engel et al., "DDSP: Differentiable Digital Signal Processing," Proc. ICLR, 2020.
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Basic Framework of Proposed Method
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Analysis, Synthesis, Channel modules are all composed of neural networks.

Analysis and Channel modules: 2D and 1D U-Net models

Synthesis module: HiFi-GAN [Kong+, 2020]
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Basic Framework of Proposed Method
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Basic Framework of Proposed Method
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Basic Framework of Proposed Method
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MelSpec: Using mel spectrogram to train synthesis module

SourceFilter:  Using mel cepstrum + F0 to train synthesis module

Only pretraining synthesis module and freezing it. 

MelSpec
or
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Basic Framework of Proposed Method
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Audio Effect Transfer with Proposed Method

Proposed method works as Audio effector to extract and add channel features.
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Audio Effect Transfer with Proposed Method

Proposed method works as Audio effector to extract and add channel features.
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Problem on Basic Framework

Entanglement

Resulting in 
low-quality 

restored speech
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Dual Learning for Stable Training
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Applying Proposed Method to Real Data

We cannot get so much data from a single historical audio material.

Hard to learn modules with low-resource data (< 1 hour).
Ø Introducing supervised pretraining to tackle data scarcity.
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Supervised pretraining for Low-Resource Setting
Supervised pretraining with pseudo low-quality speech data
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Supervised pretraining for Low-Resource Setting
Supervised pretraining with pseudo low-quality speech data

Self-supervised learning with real data
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Experimental Evaluation
Compared our method and previous supervised method [Liu+, 2021].

1) Simulated datasets based on high-quality speech corpus [Takamichi+, 2021]

Applied four types of distortions to 6-hour single-speaker data
a) Band-limited
b) Clipped
c) Quantized & Resampled
d) Overdrive

2) Real historical audio material recorded on an analog tape recorder
Around 20 minutes’ multi-speaker data recorded in 1960s – 1970s
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Evaluation Results with Simulated Data

(a) Band-limited (b) Clipped (c) Quantized & 
Resampled (d) Overdrive

MOS Sample MOS Sample MOS Sample MOS Sample

Ground-truth 4.51 4.58 4.67 4.65

Input 2.38 2.45 1.73 1.54

Supervised
[Liu+, 2021] 3.74 3.01 2.80 2.00

Proposed
(MelSpec) 4.20 3.49 3.27 2.68

Proposed
(SourceFilter) 3.46 2.49 2.66 2.58

Proposed method achieved significantly higher MOS than previous supervised method. 

Mean opinion score (MOS) test of speech quality with 40 listeners in each case
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Evaluation Results with Real Data

MOS Sample

Input 2.98

Supervised [Liu+, 2021] 2.80

Proposed
(MelSpec) 2.96

Proposed + pretraining
(MelSpec) 3.06

Evaluated proposed method with real historical audio (around 20 min).
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Evaluation Results with Real Data

MOS Sample

Input 2.98

Supervised [Liu+, 2021] 2.80

Proposed
(MelSpec) 2.96

Proposed + pretraining
(MelSpec) 3.06

Statistical significance 
(p-value < 0.05) 

in side-by-side test

Effectiveness 
for real data

Still needs 
pretraining 
for real data

Evaluated proposed method with real historical audio (around 20 min).
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Evaluation Results of Audio Effect Transfer
Similarity MOS (SMOS) test for similarity of audio characteristics.

• Source: Original high-quality audio samples
• Mean spec. diff: Applying differential spectrum to original audio samples
• Proposed: Performing audio effect transfer with our method 
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Evaluation Results of Audio Effect Transfer

Simulated
(Quantized & Resampled) Real

Target 3.98 2.99

Source 1.16 1.30

Mean spec. diff 1.68 -

Proposed 3.44 2.12

Similarity MOS (SMOS) test for similarity of audio characteristics.

• Source: Original high-quality audio samples
• Mean spec. diff: Applying differential spectrum to original audio samples
• Proposed: Performing audio effect transfer with our method 
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Thank you for your attention!!!

Self-supervised speech restoration without paired data

Confirmed effectiveness with real data but need more data.

Code More audio samples
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