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Background: Speech Restoration

Need to use and analyze existing degraded speech data.
E.g.) Historical audio materials, telephone recordings, etc.

Containing low-resource languages, endangered cultures, etc.
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Background: Speech Restoration

Speech restoration: generating clean speech from degraded speech.

Low-quality old recordings High-quality restored audio
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Background: Speech Restoration

Speech restoration: generating clean speech from degraded speech.

Speech restoration of real data is highly challenging.
Paired training data are not available.
Cannot use information on acoustics distortions (e.g., audio devices).

Low-quality old recordings High-quality restored audio
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Our Approach: Self-Supervised Speech Restoration 6/38

Learning speech restoration model without paired data.
Simulating the generation process of recorded audio.
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Our Approach: Self-Supervised Speech Restoration

Learning speech restoration model without paired data.

Simulating the generation process of recorded audio.

Generation process of low-quality speech
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Our Approach: Self-Supervised Speech Restoration

Learning speech restoration model without paired data.

Consisting of analysis, synthesis, and channel modules.
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Related Work 10/38

Supervised learning for speech restoration [Liu+, 2021]
Training analysis and synthesis modules separately.
Creating artificial paired training data.
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Our approach uses real data based on self-supervised learning.

H. Liu et al., "Voicefixer: Toward general speech restoration with neural vocoder," arXiv, vol. abs/2109.13731, 2021
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Differential digital signal processing (DDSP) autoencoder [Engel+, 2021]
Learning disentangled audio features in a self-supervised manner
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Our work focuses on restoration of degraded speech.

J. Engel et al., "DDSP: Differentiable Digital Signal Processing," Proc. ICLR, 2020.
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Basic Framework of Proposed Method  13/38

Analysis, Synthesis, Channel modules are all composed of neural networks.
Analysis and Channel modules: 2D and 1D U-Net models

Synthesis module: HiFi-GAN [Kong+, 2020]
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Basic Framework of Proposed Method  14/38

Analysis module estimates speech features and channel features.
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Basic Framework of Proposed Method

Synthesis module synthesizes restored speech from speech features.
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Basic Framework of Proposed Method  16/38

Channel module adds channel features to restored speech.
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Basic Framework of Proposed Method 17/38

Analysis module estimates speech features and channel features.

Synthesis module synthesizes restored speech from speech features.

Channel module adds channel features to restored speech.
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Basic Framework of Proposed Method

MelSpec: Using mel spectrogram to train synthesis module

SourceFilter: Using mel cepstrum + FQ to train synthesis module

Only pretraining synthesis module and freezing it.
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Basic Framework of Proposed Method 1938
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Audio Effect Transfer with Proposed Method

Proposed method works as Audio effector to extract and add channel features.
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Audio Effect Transfer with Proposed Method

Proposed method works as Audio effector to extract and add channel features.
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Problem on Basic Framework
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Dual Learning for Stable Training

Self-supervised learning with only degraded speech
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Dual Learning for Stable Training
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Dual Learning for Stable Training

Backward training with arbitrary high-quality speech
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Dual Learning for Stable Training

Self-supervised learning with only degraded speech
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Applying Proposed Method to Real Data 27/38

We cannot get so much data from a single historical audio material.

Hard to learn modules with low-resource data (< 1 hour).
» Introducing supervised pretraining to tackle data scarcity.



Supervised pretraining for Low-Resource Setting 28/38

Supervised pretraining with pseudo low-quality speech data
Artificially creating degraded speech
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Supervised pretraining for Low-Resource Setting 29/38

Supervised pretraining with pseudo low-quality speech data
Artificially creating degraded speech
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Self-supervised learning with real data

Forward learning with only degraded speech
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Experimental Evaluation

Compared our method and previous supervised method [Liu+, 2021].

1) Simulated datasets based on high-quality speech corpus [Takamichi+, 2021]
Applied four types of distortions to 6-hour single-speaker data
a) Band-limited
b) Clipped
¢) Quantized & Resampled
d) Overdrive



Experimental Evaluation

Compared our method and previous supervised method [Liu+, 2021].

1) Simulated datasets based on high-quality speech corpus [Takamichi+, 2021]
Applied four types of distortions to 6-hour single-speaker data
a) Band-limited
b) Clipped
¢) Quantized & Resampled
d) Overdrive

2) Real historical audio material recorded on an analog tape recorder
Around 20 minutes’ multi-speaker data recorded in 1960s — 1970s



Evaluation Results with Simulated Data 33/38

Mean opinion score (MOS) test of speech quality with 40 listeners in each case

(a) Band-limited

(b) Clipped

(c) Quantized &
Resampled

(d) Overdrive

MOS | Sample MOS Sample MOS Sample MOS Sample

Ground-truth | 451 | ) 4.58 ) 4.67 =b) 4.65
Input 238 | ) 2.45 ") 1.73 =) 1.54 )
Supervised 374 | ) 3.01 2.80 ) 2.00
[Liu+, 2021] ° N Y/ . N7 . N Yy . N Y
Proposed R

) ) C2)) EY) . =?7)
(MelSpec) 4.20 ), 3.49 3.27 %) 2.68 R
Lopose 346 | ) 2.49 =D) 2.66 D) 2.58
(SourceFilter) {4 44 o \

Proposed method achieved significantly higher MOS than previous supervised method.



Evaluation Results with Real Data

Evaluated proposed method with real historical audio (around 20 min).

MOS Sample

Input 2.98 )
Supervised [Liu+, 2021] 2.80 )
Proposed )
(MelSped) 2.96

Proposed + pretraining

(|\/|e|Spec) 3.06 C




Evaluation Results with Real Data

Evaluated proposed method with real historical audio (around 20 min).

Statistical significance

(p-value < 0.05)
in side-by-side test [ Input

MOS Sample
( Supervised [Liu+, 2021] 280 [
pretraining
3.06 =b) for real data

Effectiveness (MelSpec)
for real data | .
Proposed + pretraining

(MelSpec)




Evaluation Results of Audio Effect Transfer 36/38

Similarity MOS (SMOS) test for similarity of audio characteristics.

* Source: Original high-quality audio samples
« Mean spec. diff: Applying differential spectrum to original audio samples
* Proposed: Performing audio effect transfer with our method



Evaluation Results of Audio Effect Transfer 37/38

Similarity MOS (SMOS) test for similarity of audio characteristics.

« Source: Original high-quality audio samples
« Mean spec. diff: Applying differential spectrum to original audio samples
* Proposed: Performing audio effect transfer with our method

| Simulated Real
(Quantized & Resampled)
Target 3.98 2.99
Source 116 ) 1.30
Mean spec. diff 1.68 -
Proposed 3.44 =) 2.12




Thank you for your attention!!!

Self-supervised speech restoration without paired data

Confirmed effectiveness with real data but need more data.

Code More audio samples




