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TTS is widely used in AI voice user interfaces.
Recent neural TTS [Kim+21] achieves human-like natural speech.

Multilingual Text-to-Speech (TTS) 2/23



Only open to limited number of resource-rich languages.
•  Requiring paired speech-text data with studio recording audio.
•  Hard to collect enough data for low-resource languages.
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Low-Resource Multilingual Text-to-Speech (TTS)

Low-resource TTS approaches to expand number of languages. 
• Adapting multilingual model to low-resource language [Lee+18] [He+21]
• Using untranscribed speech for training [Zhang+20] [Ni+21]
• Joint semi-supervised learning with different types of data [Saeki+23]

Previous approaches heavily rely on speech recordings.
Ø Often challenging to collect training data for target languages.
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Building TTS with Multilingual Text Data

Text data is much easier to collect than paired speech-text data.
• No need to collect studio recording audio.
• No need of preprocessing to align speech and text.
• Free from sensitive speaker-related information.
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Goal: Building TTS for languages with only textual resources.
Open-up TTS systems to much more languages.

Paired data for 
language A

Text data for
language C

Multilingual TTS

Training

Synthesis

Paired data for 
language B
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Zero-Shot TTS with Unspoken Text Data
Strong zero-shot cross-lingual transferability of multilingual BERT [Devlin+19] in 
natural language processing tasks [Pires+19].

We investigate cross-lingual transfer of multilingual LM for TTS.
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Zero-Shot TTS with Unspoken Text Data

Contributions:
q Propose zero-shot TTS from text data, achieving high intelligibility.
q Improve multilingual TTS without per-language pronunciation knowledge.
q Conducted comprehensive ablation studies.

Strong zero-shot cross-lingual transferability of multilingual BERT [Devlin+19] in 
natural language processing tasks [Pires+19].

We investigate cross-lingual transfer of multilingual LM for TTS.
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Outline
q Background
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Overview of Our Framework
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Figure 2: Proposed framework. (a) We perform MLM pretraining on
multilingual text data and then (b) train TTS model on paired data
with frozen language-aware embedding layer. (c) Zero-shot TTS is
performed with language IDs that are not included in paired data.

multilingual TTS framework that achieves highly intelligible
TTS for an unseen language, resulting in a character error rate
of less than 12%. 2) Our method also improves TTS for seen
languages, resulting in byte-based models without grapheme-
to-phoneme (G2P) modules that outperform the phoneme-
based baselines. 3) Our ablation studies provide additional
insights, including the effectiveness of the frozen language-
aware embedding layer. The experiments were conducted on
public datasets and the implementation is available1. We en-
courage readers to listen to our audio samples2.

2 Method
Our model has a typical neural TTS model architecture con-
sisting of token embedding, encoder, and decoder. First, we
use MLM pretraining with multilingual text data to learn
cross-lingual representations. Then we perform supervised
learning with paired data to learn the mapping from linguis-
tic features to speech features. The model performs inference
even for languages that are not present in the paired data.

2.1 Unsupervised Multilingual Text Pretraining
Fig. 2(a) illustrates the unsupervised pretraining method. It
uses multilingual text data consisting of languages that are
not included in the paired data. Let X = (xn 2 V |n =
1, · · · , N) denote the input text token sequence of length N ,
where V denotes a vocabulary constructed for pretraining.

1https://github.com/Takaaki-Saeki/zm-text-tts
2https://takaaki-saeki.github.io/zm-tts-text demo

We define Dtext as the text dataset. Let Ltext denote the set
of language IDs included in Dtext. First, the masked token
sequence X

m and a language ID ltext 2 Ltext are fed to the
model. Let the token embedding sequence and language em-
bedding be Z

m = (zm
n 2 Rd|n = 1, · · · , N) and el 2 Rd,

respectively. The embedding layers output Zm and el as:

Z
m = Embed(Xm; ✓T), el = Embed(ltext; ✓L), (1)

where ✓T and ✓L denote the model parameters of the to-
ken embedding and language embedding layers, respectively.
Then the token and language embeddings obtained in Eq. (1)
are added and fed to a bottleneck layer to project them into a
hidden input vector. Let Hin = (hin,n 2 Rd|n = 1, · · · , N)
and Hout = (hout,n 2 Rd|n = 1, · · · , N) denote hidden
vectors in the encoder input and output, respectively. Then
the conditional probability p(X|X�⇧) is computed as:

Hin = Bottleneck(Zm + el; ✓B), (2)
Hout = Encoder(Hin; ✓E), (3)

p(X|X�⇧) = Softmax(PredictionNet(Hout; ✓P)), (4)

where ✓B, ✓E, ✓P denote the model parameters of the bot-
tleneck layer, the encoder and a prediction network, respec-
tively. In Eq. (4), Softmax(·) denotes a softmax function. We
define the network with the model parameters {✓B, ✓T, ✓L}
as language-aware embedding layer, which jointly embeds
the token sequence X and the language ID ltext as in Eq. (1)
and (2). Let ⇧ = (⇡k 2 N|k = 1, · · · ,K) be the indexes
of the masked tokens of length K. With the probability com-
puted in Eq. (4), the training objective can be defined as:

Lmlm =
1

K

KX

k=1

log p(x⇡k |Xm),

{✓̂E, ✓̂B, ✓̂T, ✓̂L} = arg min
✓E,✓B,✓T,✓L

Lmlm.

(5)

We use UTF-8 bytes or International Phonetic Alphabet
(IPA) symbols for the input token sequence X . For each to-
ken type, the vocabulary V is constructed from Dtext, which
includes a start/end of sentence token ([SOS/EOS]). We ex-
tracted International IPA sequences using an open-source
toolkit3. To obtain the masked token X

m, we use the same
masking ratio and category as in the original BERT pre-
training [Devlin et al., 2019] for each token type. Randomly,
12 % of the tokens are replaced with the [MASK] token, and
1.5 % of them are replaced with random tokens. Also, 1.5 %
of the tokens are left unchanged and Lmlm is computed as in
Eq. (5) for those 15 % of tokens that have indices ⇧.

2.2 Supervised Learning with Paired Data
Fig. 2(b) illustrates the supervised learning of the TTS model
with paired data. We define the paired data and the set of lan-
guage IDs as Dpaired and Lpaired, respectively. Note that we
assume Lpaired ⇢ Ltext. Let Y = (yt 2 RD|t = 1, · · · , T )
denote the speech feature sequence with the length of T .
We first initialize the model parameters {✓E, ✓B, ✓T, ✓L} with

3https://github.com/espeak-ng/espeak-ng
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Unsupervised Text Pretraining
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MLM pretraining with multilingual text including many languages
q Language-agnostic tokens (Bytes and IPA*) for TTS
q Language-aware embedding layer to inject language info.

*IPA: Using International Phonetic Alphabet Symbols
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Overview of Our Framework
Supervised learning with paired data including a few languages.
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Transformer-TTS [Li+18] objectives.

Frozen language-aware embedding layer
Facilitating zero-shot cross-lingual transfer
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Overview of Our Framework
Zero-shot TTS by using unseen language IDs
Using language IDs only included in text data, not in paired data.
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Figure 2: Proposed framework. (a) We perform MLM pretraining on
multilingual text data and then (b) train TTS model on paired data
with frozen language-aware embedding layer. (c) Zero-shot TTS is
performed with language IDs that are not included in paired data.

multilingual TTS framework that achieves highly intelligible
TTS for an unseen language, resulting in a character error rate
of less than 12%. 2) Our method also improves TTS for seen
languages, resulting in byte-based models without grapheme-
to-phoneme (G2P) modules that outperform the phoneme-
based baselines. 3) Our ablation studies provide additional
insights, including the effectiveness of the frozen language-
aware embedding layer. The experiments were conducted on
public datasets and the implementation is available1. We en-
courage readers to listen to our audio samples2.

2 Method
Our model has a typical neural TTS model architecture con-
sisting of token embedding, encoder, and decoder. First, we
use MLM pretraining with multilingual text data to learn
cross-lingual representations. Then we perform supervised
learning with paired data to learn the mapping from linguis-
tic features to speech features. The model performs inference
even for languages that are not present in the paired data.

2.1 Unsupervised Multilingual Text Pretraining
Fig. 2(a) illustrates the unsupervised pretraining method. It
uses multilingual text data consisting of languages that are
not included in the paired data. Let X = (xn 2 V |n =
1, · · · , N) denote the input text token sequence of length N ,
where V denotes a vocabulary constructed for pretraining.

1https://github.com/Takaaki-Saeki/zm-text-tts
2https://takaaki-saeki.github.io/zm-tts-text demo

We define Dtext as the text dataset. Let Ltext denote the set
of language IDs included in Dtext. First, the masked token
sequence X

m and a language ID ltext 2 Ltext are fed to the
model. Let the token embedding sequence and language em-
bedding be Z

m = (zm
n 2 Rd|n = 1, · · · , N) and el 2 Rd,

respectively. The embedding layers output Zm and el as:

Z
m = Embed(Xm; ✓T), el = Embed(ltext; ✓L), (1)

where ✓T and ✓L denote the model parameters of the to-
ken embedding and language embedding layers, respectively.
Then the token and language embeddings obtained in Eq. (1)
are added and fed to a bottleneck layer to project them into a
hidden input vector. Let Hin = (hin,n 2 Rd|n = 1, · · · , N)
and Hout = (hout,n 2 Rd|n = 1, · · · , N) denote hidden
vectors in the encoder input and output, respectively. Then
the conditional probability p(X|X�⇧) is computed as:

Hin = Bottleneck(Zm + el; ✓B), (2)
Hout = Encoder(Hin; ✓E), (3)

p(X|X�⇧) = Softmax(PredictionNet(Hout; ✓P)), (4)

where ✓B, ✓E, ✓P denote the model parameters of the bot-
tleneck layer, the encoder and a prediction network, respec-
tively. In Eq. (4), Softmax(·) denotes a softmax function. We
define the network with the model parameters {✓B, ✓T, ✓L}
as language-aware embedding layer, which jointly embeds
the token sequence X and the language ID ltext as in Eq. (1)
and (2). Let ⇧ = (⇡k 2 N|k = 1, · · · ,K) be the indexes
of the masked tokens of length K. With the probability com-
puted in Eq. (4), the training objective can be defined as:

Lmlm =
1

K

KX

k=1

log p(x⇡k |Xm),

{✓̂E, ✓̂B, ✓̂T, ✓̂L} = arg min
✓E,✓B,✓T,✓L

Lmlm.

(5)

We use UTF-8 bytes or International Phonetic Alphabet
(IPA) symbols for the input token sequence X . For each to-
ken type, the vocabulary V is constructed from Dtext, which
includes a start/end of sentence token ([SOS/EOS]). We ex-
tracted International IPA sequences using an open-source
toolkit3. To obtain the masked token X

m, we use the same
masking ratio and category as in the original BERT pre-
training [Devlin et al., 2019] for each token type. Randomly,
12 % of the tokens are replaced with the [MASK] token, and
1.5 % of them are replaced with random tokens. Also, 1.5 %
of the tokens are left unchanged and Lmlm is computed as in
Eq. (5) for those 15 % of tokens that have indices ⇧.

2.2 Supervised Learning with Paired Data
Fig. 2(b) illustrates the supervised learning of the TTS model
with paired data. We define the paired data and the set of lan-
guage IDs as Dpaired and Lpaired, respectively. Note that we
assume Lpaired ⇢ Ltext. Let Y = (yt 2 RD|t = 1, · · · , T )
denote the speech feature sequence with the length of T .
We first initialize the model parameters {✓E, ✓B, ✓T, ✓L} with

3https://github.com/espeak-ng/espeak-ng
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Languages and Dataset

Languages Code Text-only data Paired data
Text Audio

Seen languages for evaluation Lseen

German de 359MB 0.73MB 16.13h
French fr 372MB 0.94MB 19.15h
Dutch nl 336MB 0.75MB 14.10h
Finnish fi 308MB 0.47MB 21.36h
Hungarian hu 104MB 0.51MB 10.53h
Russian ru 4.9MB 1.5MB 10.00h
Greek el 0.39MB 0.39MB 4.13h

Unseen language for evaluation Lunseen

Spanish es 345MB 0.0MB (1.2MB) 0.00h (23.81h)

Languages not included in CSS10

English en 338MB
Estonian et 87MB
Croatian hr 2.0MB
Italian it 334MB
Lithuanian lt 89MB
Polish pl 102MB
Romanian ro 67MB
Slovak sk 94MB
Slovenian sl 81MB

Table 1: Amount of text-only and paired data for each language.
Parentheses indicate amount of original data in CSS10.

2) ensure a sufficient number of evaluators for the subjective
evaluation. We used 5 and 100 utterances as dev and test sets,
respectively, with the remaining data used for training.

Training details

The sampling rate was set to 16 kHz. An 80-dimension
of mel filter bank, 1024 samples of FFT length, and 256
samples of frame shit were used for speech analysis. For
the pretraining described in § 2.1, we trained the model for
1.2M iterations using the Noam optimizer [Vaswani et al.,
2017] with the learning rate and warm-up step set to 1.0
and 10000, respectively. For the TTS model described in
§ 2.4, we used a 6-block Transformer encoder [Vaswani et

al., 2017] and a 6-block Transformer decoder, with a post-
net consisting of five convolutional layers with a kernel size
of five. The attention dimension and the number of atten-
tion heads were set to 512 and 8, respectively. For the bot-
tleneck layer described in § 2.4, we set the hidden dimen-
sion after the down projection to 256. The PredictionNet in
Eq. (4) consisted of a linear layer, a GELU activation func-
tion [Hendrycks and Gimpel, 2016], Layer Normalization,
and a linear layer with the hidden dimension of 512. We
also used guided attention loss [Tachibana et al., 2018] to
improve the training efficiency. For the supervised learn-
ing described in § 2.2, we trained the models for 2.47M it-
erations (200 epochs). The Noam optimizer was used with
the warm-up step of 50000. For the neural vocoder, we
trained HiFi-GAN [Kong et al., 2020] for 2M iterations
with LibriTTS [Zen et al., 2019], VCTK [Veaux et al.,
2017], and CSS10. For the x-vector described in § 2.4, we
used a model trained on VoxCeleb1 and VoxCeleb2 [Na-
grani et al., 2017] published in SpeechBrain [Ravanelli et

al., 2021]. We used ESPnet2-TTS [Watanabe et al., 2018;
Hayashi et al., 2021] for the implementation.

Baselines

We developed baseline models without the pretraining.

Seen language. Monolingual: We trained a model for
each language independently. Our preliminary study found
that Transformer TTS was unstable and could not synthesize
intelligible speech in the monolingual condition due to the
lack of training data. Therefore, we used Tacotron2 [Shen et

al., 2018] only for the monolingual models, as in the original
paper of the dataset [Park and Mulc, 2019]. Multilingual w/o

LIDs: We trained a multilingual Transformer TTS model
using the paired data shown in Table 1 without language IDs
(LIDs). Multilingual w/ LIDs: We trained a multilingual
Transformer TTS model with the paired data of the unseen
language. It also used the language IDs.

Unseen language. We compared Fully zero-shot TTS and
Text-seen zero-shot TTS defined in § 2.3. In Oracle, we used
the Monolingual and Multilingual w/ LIDs, which used the
paired data of the unseen language. In Fully zero-shot TTS,
we used Multilingual w/o LIDs to synthesize speech from text
tokens in the unseen language. This method corresponds to
the conventional multilingual TTS model using bytes [He et

al., 2021] or IPA phones [Staib et al., 2020].

Evaluation metrics

To objectively measure the synthetic speech quality, we used
mel cepstral distortion (MCD) [Fukada et al., 1992] with
the mel cepstrum dimension set to 25. We also evaluated
the intelligibility using CERs computed with a multilingual
ASR model [Radford et al., 2022]. We used a pretrained
large model that is publicly available4. To evaluate the nat-
uralness, we carried out listening tests to calculate five-scale
mean opinion scores (MOS) of synthesized speech for each
method. Forty native speakers were recruited through Ama-
zon Mechanical Turk [Paolacci et al., 2010] for each of the
tests. Furthermore, we leveraged a publicly available auto-
matic MOS (AMOS) prediction model [Saeki et al., 2022a]
to evaluate the naturalness. Note that the model was trained
on English and Chinese datasets, but previous work [Seki et

al., 2022] has reported that it also showed a correlation coef-
ficient higher than 0.8 for another language (Japanese).

3.2 Evaluation results on seen languages

We evaluated our framework on the seen languages included
in the paired data, as defined in § 2.3. Table 2 lists the re-
sults in MCD and CER. Lower values are better for both met-
rics. As we can see, the byte-based or phone-based models
with the proposed multilingual pretraining performed the best
across all languages and metrics. Among the baselines, byte-
based monolingual and multilingual models tended to have
higher MCD and CER than phone-based models, and failed
to synthesize intelligible speech in some languages.For ex-
ample, the baseline byte-based models showed the high CER
values for French, which has a deep orthography, meaning
that a single character has different pronunciations depend-
ing on the context. We observed that our method improved
the byte-based models and they outperformed the phone-
based baseline models for all the metrics and languages. It
is worth noting that the proposed byte-based models even
outperformed the proposed phone-based models except for el

4https://github.com/openai/whisper

Text data:19 European languages.
Paired data: 7 European languages.
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Languages and Dataset

Languages Code Text-only data Paired data
Text Audio

Seen languages for evaluation Lseen

German de 359MB 0.73MB 16.13h
French fr 372MB 0.94MB 19.15h
Dutch nl 336MB 0.75MB 14.10h
Finnish fi 308MB 0.47MB 21.36h
Hungarian hu 104MB 0.51MB 10.53h
Russian ru 4.9MB 1.5MB 10.00h
Greek el 0.39MB 0.39MB 4.13h

Unseen language for evaluation Lunseen

Spanish es 345MB 0.0MB (1.2MB) 0.00h (23.81h)

Languages not included in CSS10

English en 338MB
Estonian et 87MB
Croatian hr 2.0MB
Italian it 334MB
Lithuanian lt 89MB
Polish pl 102MB
Romanian ro 67MB
Slovak sk 94MB
Slovenian sl 81MB

Table 1: Amount of text-only and paired data for each language.
Parentheses indicate amount of original data in CSS10.

2) ensure a sufficient number of evaluators for the subjective
evaluation. We used 5 and 100 utterances as dev and test sets,
respectively, with the remaining data used for training.

Training details

The sampling rate was set to 16 kHz. An 80-dimension
of mel filter bank, 1024 samples of FFT length, and 256
samples of frame shit were used for speech analysis. For
the pretraining described in § 2.1, we trained the model for
1.2M iterations using the Noam optimizer [Vaswani et al.,
2017] with the learning rate and warm-up step set to 1.0
and 10000, respectively. For the TTS model described in
§ 2.4, we used a 6-block Transformer encoder [Vaswani et

al., 2017] and a 6-block Transformer decoder, with a post-
net consisting of five convolutional layers with a kernel size
of five. The attention dimension and the number of atten-
tion heads were set to 512 and 8, respectively. For the bot-
tleneck layer described in § 2.4, we set the hidden dimen-
sion after the down projection to 256. The PredictionNet in
Eq. (4) consisted of a linear layer, a GELU activation func-
tion [Hendrycks and Gimpel, 2016], Layer Normalization,
and a linear layer with the hidden dimension of 512. We
also used guided attention loss [Tachibana et al., 2018] to
improve the training efficiency. For the supervised learn-
ing described in § 2.2, we trained the models for 2.47M it-
erations (200 epochs). The Noam optimizer was used with
the warm-up step of 50000. For the neural vocoder, we
trained HiFi-GAN [Kong et al., 2020] for 2M iterations
with LibriTTS [Zen et al., 2019], VCTK [Veaux et al.,
2017], and CSS10. For the x-vector described in § 2.4, we
used a model trained on VoxCeleb1 and VoxCeleb2 [Na-
grani et al., 2017] published in SpeechBrain [Ravanelli et

al., 2021]. We used ESPnet2-TTS [Watanabe et al., 2018;
Hayashi et al., 2021] for the implementation.

Baselines

We developed baseline models without the pretraining.

Seen language. Monolingual: We trained a model for
each language independently. Our preliminary study found
that Transformer TTS was unstable and could not synthesize
intelligible speech in the monolingual condition due to the
lack of training data. Therefore, we used Tacotron2 [Shen et

al., 2018] only for the monolingual models, as in the original
paper of the dataset [Park and Mulc, 2019]. Multilingual w/o

LIDs: We trained a multilingual Transformer TTS model
using the paired data shown in Table 1 without language IDs
(LIDs). Multilingual w/ LIDs: We trained a multilingual
Transformer TTS model with the paired data of the unseen
language. It also used the language IDs.

Unseen language. We compared Fully zero-shot TTS and
Text-seen zero-shot TTS defined in § 2.3. In Oracle, we used
the Monolingual and Multilingual w/ LIDs, which used the
paired data of the unseen language. In Fully zero-shot TTS,
we used Multilingual w/o LIDs to synthesize speech from text
tokens in the unseen language. This method corresponds to
the conventional multilingual TTS model using bytes [He et

al., 2021] or IPA phones [Staib et al., 2020].

Evaluation metrics

To objectively measure the synthetic speech quality, we used
mel cepstral distortion (MCD) [Fukada et al., 1992] with
the mel cepstrum dimension set to 25. We also evaluated
the intelligibility using CERs computed with a multilingual
ASR model [Radford et al., 2022]. We used a pretrained
large model that is publicly available4. To evaluate the nat-
uralness, we carried out listening tests to calculate five-scale
mean opinion scores (MOS) of synthesized speech for each
method. Forty native speakers were recruited through Ama-
zon Mechanical Turk [Paolacci et al., 2010] for each of the
tests. Furthermore, we leveraged a publicly available auto-
matic MOS (AMOS) prediction model [Saeki et al., 2022a]
to evaluate the naturalness. Note that the model was trained
on English and Chinese datasets, but previous work [Seki et

al., 2022] has reported that it also showed a correlation coef-
ficient higher than 0.8 for another language (Japanese).

3.2 Evaluation results on seen languages

We evaluated our framework on the seen languages included
in the paired data, as defined in § 2.3. Table 2 lists the re-
sults in MCD and CER. Lower values are better for both met-
rics. As we can see, the byte-based or phone-based models
with the proposed multilingual pretraining performed the best
across all languages and metrics. Among the baselines, byte-
based monolingual and multilingual models tended to have
higher MCD and CER than phone-based models, and failed
to synthesize intelligible speech in some languages.For ex-
ample, the baseline byte-based models showed the high CER
values for French, which has a deep orthography, meaning
that a single character has different pronunciations depend-
ing on the context. We observed that our method improved
the byte-based models and they outperformed the phone-
based baseline models for all the metrics and languages. It
is worth noting that the proposed byte-based models even
outperformed the proposed phone-based models except for el

4https://github.com/openai/whisper

Chose Spanish as an unseen language for main evaluation.
* To ensure enough human evaluators.
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Ablation Models
Methods
q Baseline: without unsupervised text pretraining.
q Proposed: with unsupervised text pretraining.
q Oracle: Using paired data for the target language.

Token types
q Bytes: Without language-specific knowledge.
q IPA: Using per-language pronunciation dictionary.
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Evaluation Metrics
Evaluation metrics

q Mel Cepstral Distortion (MCD) [Fukada+1992]
q Character Error Rates (CER) computed by Whisper [Radford+22]
q Automatic Mean opinion scores (AMOS)
q Subjective mean opinion scores (MOS)

18/23



Results (Unseen Language)

Spanish
MCD (↓) CER (↓)

Ground-truth - 2.71
Oracle (Bytes) 8.65 10.70
Oracle (IPA) 6.20 5.32
Baseline (IPA) 10.75 44.75
Proposed (Bytes) 9.05 18.27
Proposed (IPA) 9.44 11.69

Oracle: Using unseen language during training
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Demo

Spanish
Sample CER (↓)

Ground-truth 2.71
Oracle (IPA) 5.32
Baseline (Bytes) 66.45
Proposed (Bytes) 18.27

Se me representaba el sonido de las campanas de la iglesia, tocadas por los cuatro muchachos o por el ingrato padre.
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Summary
Background
q  Need to reduce cost of data collection of neural multilingual TTS

Method
q Multilingual unsupervised text pretraining
q Zero-shot TTS from unseen language

Results
q  Achieved highly intelligible (CER < 12%) zero-shot TTS
q  Observed language dependency

Future work
q Need to improve naturalness and prosody
q Need to develop a method that works well for many languages

More audio samples

Paper
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