Presentation Video for IEEE ICASSP 2023

Virtuoso: Massive Multilingual Speech-Text Joint Semi-Supervised Learning for Text-To-Speech

Takaaki Saeki³, Heiga Zen¹, Zhehuai Chen², Nobuyuki Morioka¹, Gary Wang², Yu Zhang², Ankur Bapna², Andrew Rosenberg², Bhuvana Ramabhadran²

¹Google, Japan ²Google, USA ³The University of Tokyo, Japan

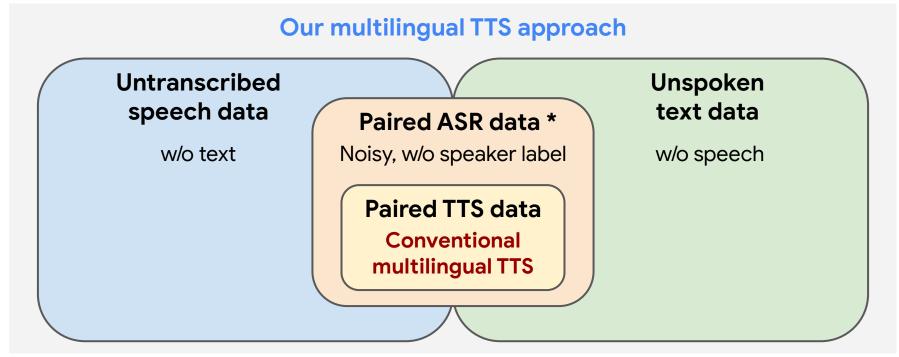
Outline

1. Background

2. Method

3. Experiments

4. Results and Analysis


Multilingual Text to Speech (TTS)

Previous multilingual TTS covers limited number of languages. E.g.) TTS on several European languages [Zen+, 2012] [Li+, 2016]

Recent work is scaling multilingual TTS to **tens of languages**. E.g.) Direct Byte-input TTS with 43 languages [He+, 2021]

Previous work still relies on **paired TTS corpora.** Suffering from collection cost of high-quality paired data.

We aim to extend multilingual TTS to much more languages by **using diverse speech and text data.** Using Diverse Speech and Text Data for Multilingual TTS We develop a semi-supervised learning (SSL) method that jointly uses paired speech-text, untranscribed speech, and unspoken text data.

* Paired ASR data: paired data used for automatic speech recognition (ASR)

Extending Speech-Text SSL Framework to TTS

Multilingual **speech-text SSL** [Bapna+, 2022] has been studied. Improving downstream **recognition tasks** by utilizing unpaired data.

Maestro [Chen+, 2022]: Modality matching of speech and text Upsampling text embedding to learn unified representations.

Our framework: Virtuoso*

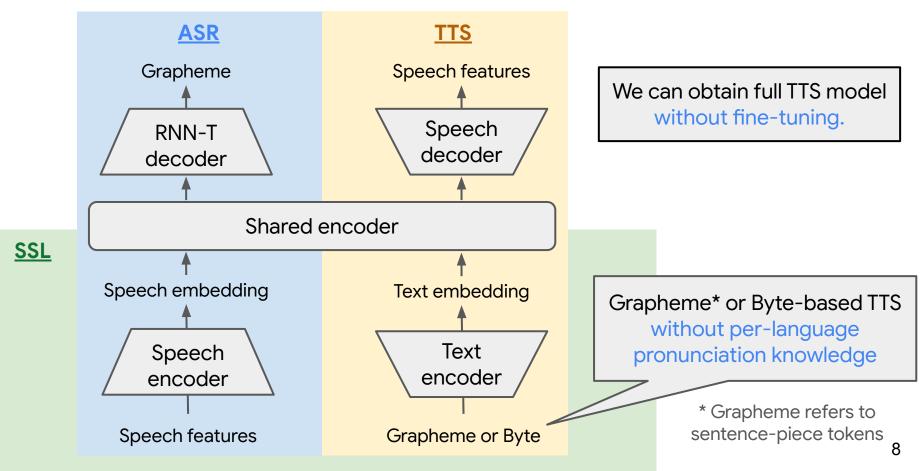
Extending **Maestro** to **speech generation task.** Introducing additional **speech decoder** for TTS. Using **paired and unpaired** multilingual speech-text data for TTS.

* Virtuoso: Synonym of Maestro

Outline

1. Background

2. Method


3. Experiments

4. Results and Analysis

Model Architecture of Virtuoso

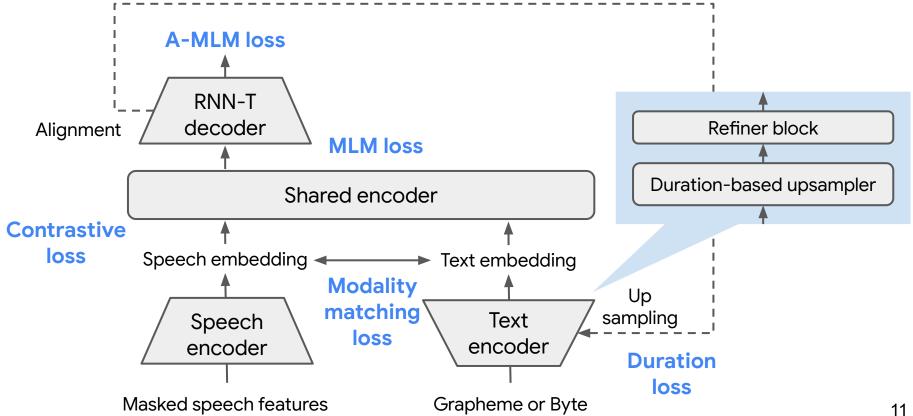
Model Architecture of Virtuoso

Training Schemes of Virtuoso

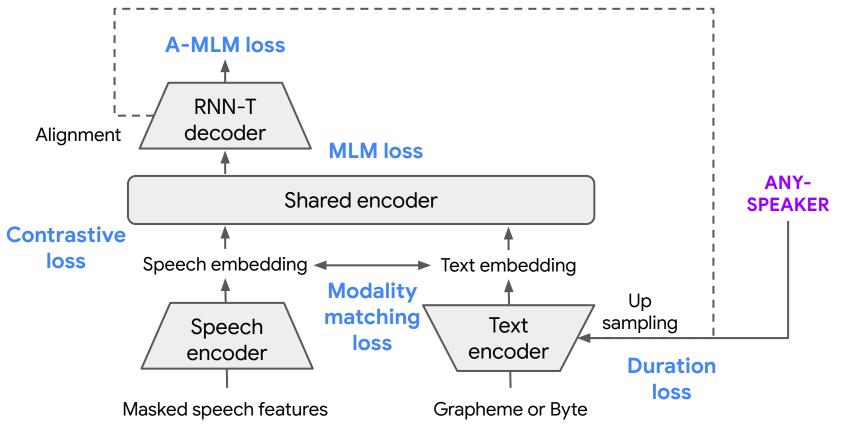
Concerns in data usage for Virtuoso

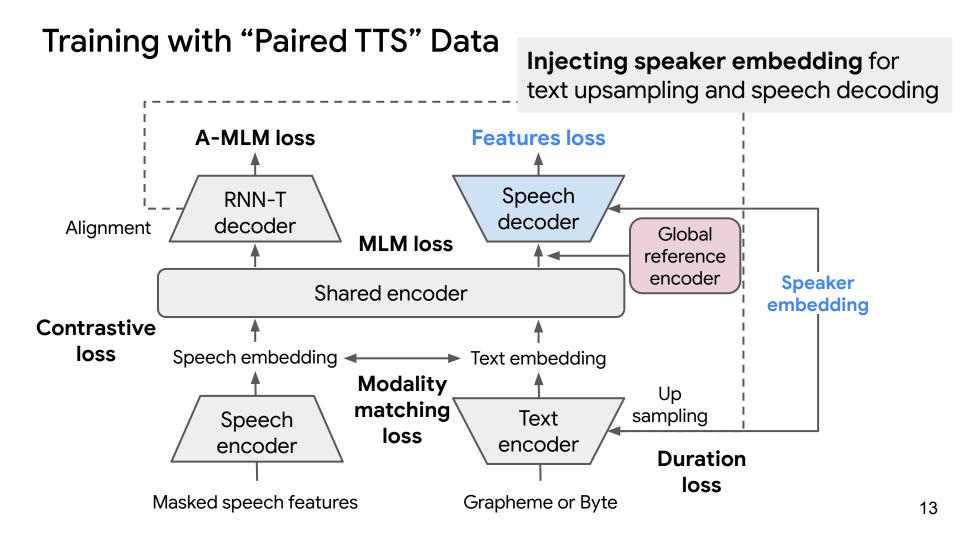
- *for* Audio recordings in ASR data can be too noisy for TTS.
- *F* Paired ASR data often do not include speaker IDs [Conneau+, 2023].

Training Schemes of Virtuoso

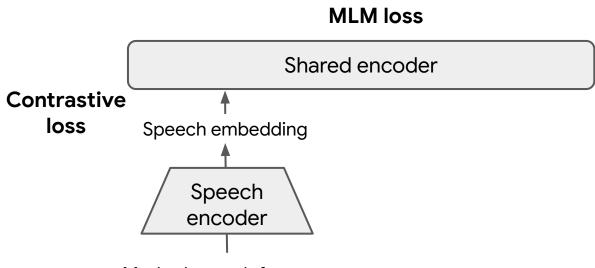

Concerns in data usage for Virtuoso

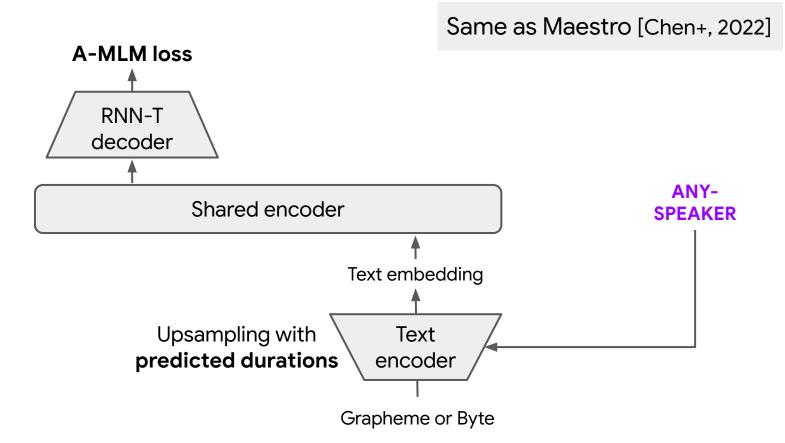
- *for* Audio recordings in ASR data can be too noisy for TTS.
- *F* Paired ASR data often do not include speaker IDs [Conneau+, 2023].

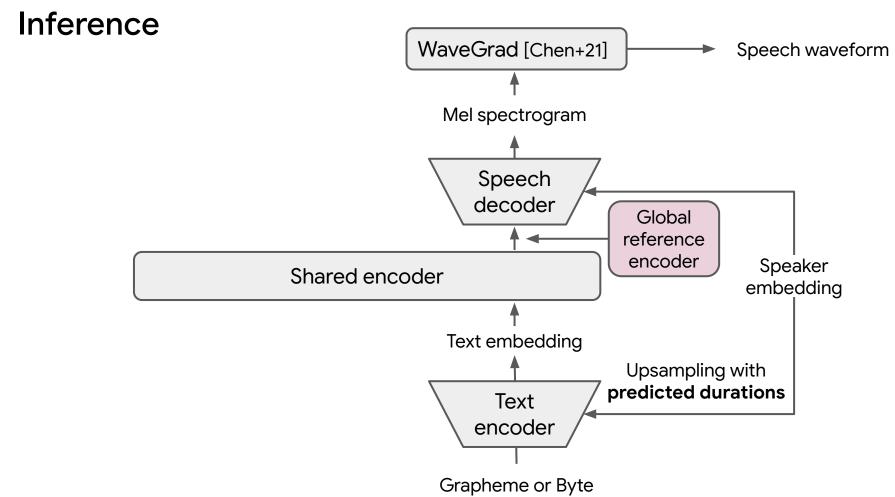

Different training schemes for each data condition


- 1) Paired ASR data: Real-world paired data used for ASR
- 2) Paired TTS data: High-quality paired data used for TTS
- 3) Unpaired speech data
- 4) Unpaired text data

Training with "Paired ASR" Data Same as Maestro [Chen+, 2022] Not using speech decoder.


Training with "Paired ASR" DataSame as Maestro [Chen+, 2022]Not using speech decoder.




Training with Untranscribed Speech Data

Same as previous **Speech SSL** (w2v-BERT [Chung+, 2021])

Training with Unspoken Text Data

Outline

1. Background

2. Method

3. Experiments

4. Results and Analysis

Datasets

Paired TTS	40 languages, 1.5kh Proprietary clean TTS corpus
Paired ASR	96 languages, 3.3kh Voxpopuli [Wang+, 2021]: 14 languages, 1.3k h MLS [Pratap+, 2019]: 8 languages, 80h Babel [Gales+, 2014]: 17 languages, 1000h Fleurs: 96 languages, 960 h
Unpaired speech	51 languages, 429kh Voxpopuli, MLS, CommonVoice [Ardila+, 2019], and Babel
Unpaired text	101 languages, 15TB Voxpopuli: 3GB MC4 [Xue+, 2020]: 101 languages, 15TB

Methods

Baseline

- Tacotron2-G-TTS: Tacotron 2 [Shen+, 2018] with graphemes
- MaestroFT-G-TTS: Fine-tuning pretrained Maestro with graphemes

Proposed

- Virtuoso-G-Pair: Graphemes, Only with paired data
- Virtuoso-G-All: Graphemes, With unpaired data
- Virtuoso-B-Lid-All: Bytes+Language IDs, With unpaired data

* Refer to the paper for the full list of methods in our evaluation.

Evaluation Metrics

- 1. **TER**: Token error rates with a pretrained multilingual ASR model Evaluating **accuracy of linguistic contents**
- 2. SQuid: Automatic speech quality assessment model [Sellam+, 2022] Evaluating speech quality
- 3. Mean opinion score (MOS)*: Subjective test commonly used in TTS Evaluating naturalness of synthetic speech

* We omit the results in this video. Refer to the paper for details.

Outline

1. Background

2. Method

3. Experiments

4. Results and Analysis

Evaluation of Seen Languages

Spanish (71.9h)		Slovenia	an (0.3h)	
TER (↓)	SQuld (†)	TER (↓)	SQuld (†)	
0.058	-	0.178	-	
0.079	3.84	0.109	3.87	
0.076	4.00	0.139	3.87	
0.071	<u>4.06</u>	<u>0.068</u>	<u>3.99</u>	
0.073	4.05	0.073	3.93	
<u>0.062</u>	4.05	0.070	3.92	
	Spanish TER (↓) 0.058 0.079 0.076 0.071 0.073	Spanish (71.9h) TER (↓) SQuid (↑) 0.058 - 0.079 3.84 0.076 4.00 0.071 4.06 0.073 4.05	Spanish (71.9h) Slovenia TER (\downarrow) SQuId (\uparrow) TER (\downarrow) 0.058 - 0.178 0.079 3.84 0.109 0.076 4.00 0.139 0.071 4.06 0.068 0.073 4.05 0.073	

Seen languages: Paired TTS data was available.

Virtuoso outperformed baseline methods in TER and SQuId Virtuoso-G-Paired tended to show better results.

Amount of paired TTS data

Evaluation of Unseen languages

Unseen languages: We can use paired ASR data but cannot use paired TTS data.

	Tamil	(0h)	Turkish (Oh)	
	TER (↓)	SQuld (†)	TER (↓)	SQuld (†)
Natural	0.163	-	0.053	-
Tacotron2-G-TTS	0.928	3.39	0.748	3.74
MaestroFT-G-TTS	0.952	2.62	0.819	3.99
Virtuoso-G-Paired	0.274	<u>4.35</u>	0.380	4.02
Virtuoso-G-All	<u>0.250</u>	4.23	0.241	<u>4.06</u>
Virtuoso-B-LID-All	0.295	4.15	<u>0.202</u>	4.03

Virtuoso achieved reasonably-good performance for *unseen* languages. Showing feasibility of **zero-shot TTS from real-world paired ASR data**.

Effect of Unpaired Data

	Seen (10 languages)		Unseen (4 languages)	
	TER (Ļ)	SQuld (†)	TER (Ļ)	SQuld (†)
Natural	0.086	-	0.098	-
Tacotron2-G-TTS	0.115	3.858	0.587	3.650
MaestroFT-G-TTS	0.110	3.932	0.578	3.525
Virtuoso-G-Paired	0.099	<u>4.046</u>	0.286	<u>4.055</u>
Virtuoso-G-All	0.100	4.011	0.258	3.985
Virtuoso-B-LID-All	<u>0.096</u>	4.008	<u>0.253</u>	3.985

Effectiveness of using **unpaired data** to improve **intelligibility**. Virtuoso **only with paired data** showed better speech quality.

Need to investigate better utilization of unpaired data in future.

Summary

Motivation

Massive Multilingual SSL to scale-up TTS to much more languages.

<u>Method: Virtuoso</u> Extending **Maestro** to TTS by introducing **speech decoder. Different training schemes** with paired TTS, paired ASR, and unpaired data

<u>Results</u>

Outperformed baseline multilingual TTS for seen and unseen languages. Achieved reasonably-good **zero-shot TTS without paired TTS data**.

Future work

Using data in hundreds of languages. Improving utilization of unpaired speech and text data.

Paper

Demo

Appendix

Results of Subjective Evaluations

Virtuoso showed higher MOS than baseline methods

Virtuoso showed 3.39 MOS even for a zero-resource language

	English	French	Spanish	Tamil
Tacotron2-G	3.31 ±0.045	3.60 ±0.068	3.53±0.085	1.59 ±0.088
Maestro-Finetune-G	3.67 ±0.040	3.85±0.060	3.66±0.070	1.24 ±0.051
Virtuoso-G-TTS	1.87 ±0.050	2.35±0.109	1.60 ±0.095	1.28 ±0.069
Virtuoso-G-Paired	3.79 ±0.041	3.95±0.059	3.96 ±0.069	3.39±0.083
Virtuoso-G-All	3.81 ±0.039	3.86 ±0.065	3.89 ±0.074	2.98 ±0.078
Virtuoso-G-LID-All	1.89 ±0.037	2.14 ±0.087	2.36±0.078	1.89 ±0.077
Virtuoso-B-LID-All	3.71 ±0.041	3.82 ±0.066	4.01 ±0.065	2.89±0.083